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CHAPTER I

INTRODUCTION

General

When the design of protective structures to resist blast and other close-in nuclear weapons effecis is considered, it is

only logical to realize that simultaneously large amounis of initial and fallout radiation may be inevitable realities. The

shielding that is required to provide adequate resistance to close-in radiological effects, and the structural strength

required to properly resist the blast effects in these regions, suggest buried structures as the mast feasible solution. It is
observed that the buried structure, in addition to providing resistance to these effects, possesses a hardness which is
applicable to resisting other effects, for example those from the immediate thermal pulse and the effects of later fires.

Laymen, and engincers Alike, hove for years concluded that such shelters are beyond the reach of economical

programs. This in fact is reflected in current national OCD policy and the National Shelter Program. However, such
reasoning is usually not based on studies which consider true minimum cost structure!. In general, the structures on which

these conclusions are based are traditional in concept. These traditional structures in general grew from application of

traditional design procedures to situations in which loadings are of one or two orders of magnitude 3.reater thein traditional.

Traditional Configurations

Traditional building configurations or shapes were originally conceived and generated to house man in ever/day
fiunctions; and were called upon, structurally, to resist only naturai and self induced loads of moderate magnitude. Most

of the engineering technology developed for traditional cr conventional design was direceJ toward the development of

procedures and methodologies to adequately assu-e the designer that this structure, which for example was co.,iposed of
beams and slabs, would properly resist these conventional loads. The magnitude of load rarely affeted very greatly the

cho.ce of structural type. When overpressures from nuclear bursts are considered, and then the existing design procedures

are applied to design traditional type structures for these higher loadings, ihere is little wonder that expensive designs result.

Design EcooTmy

Two aspects (among others) are present in the design of all civil engineering structures. They are the selection of
configuration, and the determination of size. The configuration, or shape, is a qualitative matter which describes in
general terms the nature of the structure such as a flat slab, beam slab, concrete joist, or dome type. The other aspect is
size of the structural components which are contained in the shape. These are aspects such as thicknesses, amounts and

location of reinforcement, etc. In the traditional civil engineering structure, the shape decision has generally been
somewhat arbitrary. The size decision,within the shape, has been determined by maor or less rigorous calculations.
This procedure results in reasonably economical solutions if loads and spans are small. In the case of design for blast
resistance, the loads are significantly higher than any considered previously. The spans ma,' be shortened, but usually
at a loss of functional value. Thus it is not surprising to discover that selection of configuration can no longer be as
arbitrary.

'n summary, if the structural configuration is selected without regard to the magnitude and type of loading, the

resulting size determinations will invariably lead to the requirement of a great amount of material, and therefore higher

cost. If, however, structural configurations are chosen out of proper respect for loads, the resulting sizes will be

reasonable and hence material quantities which arc related to cost will be reduced and held near a minimum.

Efficient Protective Structures Configurations

The most efficient forms that man knows to resist pressures are doubly-curved shell structures. A shell structure

achieves its eiiciency Ly resisting loads primarily through tho development of direct stress. Examples of these types are

the spherical and parabolic domes that are common in civil engineering solutions to the problem of spanning large arenas
with a ninimum of material. The shell of an egg is another common example of this form which exhibits the sanm type of

structural efficiency. Amonn the classes of doubly-curved shells, which are available, are some which exhibit truly the

ultimate in structural efficiency. These are the constant-stress funicular shells. The spherical pressure vessel k -in

example of this type.

Constant stress funicular shells resist pressure loads by jither developing uniform tensile or uniform compressive

stresses depending on the particular configuration. The concrete shell works best in compression; the steel shell in tension.



Unfortunately, compressive funicular shells which have low thickness to curvature ratios tend to buckle on overload. As
a general statement, a shell structure (or any structure) in a state of compression may buckle catostmophically if certain
combinations of geometric and material parameters are i;I chosen. Because the calculation or prediction of this tendency
is a complex procedure for all bxit the Aimplest of structures; and at best is an approximation, it is probably better to avoid
the problem entirely by insisting that tensile funiculor shells be used. These structures cannot buckle.

The Contract

This report is the result of a contract, a quote from which follows. It investigates the feasibil ty of the application
of these funicular structures to the problem of sheltering people from dynamic overpressures caused by nearby nuclear or
conventional bursts.

"A. The contractor, in consultation and cooperation with the Government, shall furnish all
engineering, labor, equipment, tools, materiais, supplies, facilities, and services necessary
for a feasibility study relating to optimizing shelter design. The work and services shall
pertain to the analysis and design of flexible yielding membrane elements of a shelter to resist
nornmal dynamic effects not unlike those which may result at the soil-structure interface as a
result of a nuclear blast.
B. The general areas of investigation shall include, but not be limited to the following:
1. Investigate the theoretical prediction of the configuration of a yielding membrane

and determine its application to the shelter.
2. Perform certain loading simulator studies to corroborate the intuitive fact that yielding

buried structures are efficient structural systems.
3. Extend the theory of studies involving the investiqations of the membrane supported on

yielding boundaries.
4. Determine the feasibility of future possible exploitation in this area."
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CHAPTER il

SHELTER APPLICATIONS AND CONSTRUCTION TECHNIQUES

General

In the course of introducing new concepts, such as that of the yielding membrane, it is often desirable (from a
prqsentation standpoint) to indicate the ultimate uses of the product before the involved supporting cvlculations and data
are presented. This pattern is used here; therefore, the material in this Chapter serves in port as illustration of an
application of the concept. Models are used as examples of possible shelter applications.

The f*rst example illustrates the rather limited application of a discontinuous circular dish membrane as the roof
structure of a communit,/ shelter wvhich is dcsigncd to resist 55 psi blast overpressure from a 5 MT nuclear weapnn whh it.

detonated as a surface burst. The second is on attempt at approaching the ultimate in efficiency of this application.
This approach involves a multistory cubicle structure in which the yielding membrane is continuous and completely
encloses the cubicle volume.

Circular Membrane Structure

The model shown in Figures 1 through 6 illustrates the application of the concept through the use of a dished
membrane as a roof structure. Although blast simulator studies (Chapter III) indicate that the preliminary dishing is in
fact unnecessary, from a strurtural standpoint, the application £hown is a conservative one and is to be recommended
until more test and analytical data are obtained.

The steel cap or membrane carries blast overpressure loadings primarily by the development of direct uniform
tensile stress. Little or no bending exists; hence little or no shear is present. In the application shown, the membrane
is not continuous. That is, it is a series of individually dished elements. This break in continuity requires the use of
boundary arch structures which are the reinforced-concrete edge rings. They are, in fact, concrete arches which lie in
a horizontal plane. They eventually transmit the vertical component of the load to the supporting wall structure.
Note the visual expression of structural efficiency which ;s present when steel is used in tension and concrete in compression.

To provide added toughness ;n design concept, the modular system is used. Nature has used the same system, that
ofduplication of self sustaining elements, in many naturally occurring designs; in order to assure survival of the function
of the overall product agao-nst attacks by facets of hostile environments., These modular units are 30 feet in diameter and
conservatively use 3/8 inch steel membrane roofs. Each unit is an independent structure which does not rely upor the
strength of adjacent units to provide a reaction or to contribute to the support of external forces. The particular advantage
of this indeuendent action is that the other elements of structure would not collapse if one unit failed. It must be noted

, here that large structures would be subjected to unsymmetrical loading ý;aused by the transient nature of the blast wave,
whkch would tend to shear each unit from the other vertically. The design suggested adjusts to this shearing tendency.

£ The prototype, which the model illustrates, would lend itself readily to precast and prefabricated construc-ion
metrods. The entire wall structure can be constructed from one basic shape. Precast concrete piers may be set in place.
Roof cups may be field welded to attachment points. A variation of this concept includes a membrane floor of t6e same
configuration, and material, as the roof. An internal floor system would be required as well as other changes in
construction technique. Cost estimates for this structure were reported previously on other contracts.'

Rectaniulor Membrane Structure

If opt mization of efficiency of configuration and application to the totul shelter is attempeed In concept, one
solution which results is that presented in Figures 7 through 9. These aie views of a model which is nearly the ihc"e of a
cuba. The cube is the rectilinear sol-d which has the maxium interior volume for tho minimum exteoria surface. Because
blast overpressures in shelters are hopefully resisted ordly ,t the extelar ssitu.ts, the structure that incororsates a minimum
of these surfaces uses a minimium of mraterial within the configuration or shope clui:ification. Such is a fundomenki
requirement of material cost minimization.

Final Report, "Local Civil Defense Systerm," Co'itroct C)CD-OS-62-232, Univenity of Arizona, June, 1964

and Final Report, "Cost Studies in Protective Constrmiction Systems," Subcontrurt Institute for Wefense Anoly..s,
138-4, January, 1965.
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Figure I Commiunity shelter for 4,500 persons Figure 2 *Cross-section of community :helter module

Figure 3 *Cross-sect'lor~ of cowum~nity shelter moduile Figure 4 .Close-up of construction procedure
sh~owing disi-type membrane roof structure.

Figure, 5. Construction praceidure arw Fii, ire 6 Precast Column '--kico scw~
sloping *#)franc@ to form ONI interior -~oils

4
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Figure 7 (Right), A cutaway view 4
of a model which illustrates the
concept of the use of rectangular
yielding membranes as exterior
structural parts of a shelter complex.

I This model use, a minimum of
exterior skin to a maximum of
interior voiume. The "egg crate"
walks and floors provide the needed
rigidity to keep the membrane in
place.

Figure 8 (Left). The membrarns take a dishea f-rm :%
indicated in this photograph when they are subjecte 4

to external pressure. This dishing procesu promotesl favorable soil-structure interaction behavior.

[I'

Ii

Figuqe 9 kAbove). RoqvreqtiY t of flteIb6ity in
conrctions rw crnely *llvrth',ted b) t1.i detail.
it is noc<uanr to u1e flexibie links b*er,• tive boiic

Wheltmr m- ih toe-hat discor.ntctej entroae.
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To further optimize the use of material, the exterior skin of this shelter is a continuous yielding membrane. As in
the previous example, dished elements are used even though tests indicate such preliminary dishing is unnecessary. The
advantages of continuity are apparent in the savings produced by the lack of reinforced concrete supporting edge rings.
The interior walls and floors, which are of reinforced concrete, transfer the thrust through the entire shelter where it is
equilibrated by the loads on the opposite sides. This shelter overcomes, in port, many of the structural disadvantages of
large one-story structures. Aside from using a minimum of exterior surface, it resists the "slicing up" shears that occur in
most large structures as the blast wave travels across the shelter. It is noted ir, passing that these can be extremely large
but they are not usually considered in normal routine design practice.

The structural shell as illustrated possesses reserve strength to resist all conceivable ground motions associated with
any overpressures For which it is designed. Interior details, of course, must be designed in such a way that the creation
of intrior missiles and associated damage to occupants is prevented

Other Applications

No doubt, in the review of the applications presented in this Chapter, other applications of the membrane

concept are indicated. These, in fact, do exist and include such items as blast doors, end walls to tube structures and
above-ground protective enclosures for supplies; and other item. which are unaffected by such factors a's electromagnetic
pulse, initial nuclear radiation, and fallout gamma radiation. Extremely thin membranes can resist very high overpressure
in such applications but they must be sh~elded from missile penetration. in most cases, it is not necessary for such
membrones to be pre-formed. Their ultimate resistance to blast overpressures is unaltered by leaving them inifially flat.

6



CHAPTER III

ENGINEERING ANALYSES

Introduction

Intuitively, it appears that yielding membranes are technically sound protective structure components. To support
this intuitive reasoning, it is appropriate to consider certain supporting calculations and analyses of an engineering
nature. In addition to the analysis of the continuum, attunlion must be given to the boundaries where the membranes
terminate.

With respect to these problems the details of the historical development of analysis of these structures, together
with specific developments for the instant shapes, are presented at length in Appendices A and D to this report. A
summary of some of the more essential engineering features, which ore in part abstracted from this analysis, are included
in this Chapter.

General Membrane Theory

Flexible buried structures, because of yielding characteristics which produce negative settlement ratios, offer the
ultimate in economy in view of the way in which they force the soil to resist the overload. The most efficient flexibie
structure is that which simultaneously yields under constant stress at every point in its plane. The behavior of such a
structure may be predicted in advance by an inverse solution of the differential equations for stress in shell structures
under normal pressure loadings. These structures by definition ore called funicular.

For an example of the
structural efficiency of a system
such as this, consider the following
simple comparisons. These structures
are intentonally not buried for
simplicity of presentation.

Membrane Analysis of a Thin Plate

For a comparison consider a .4
previously designed one-way 15'-." 15-0" Y 15'-OP 5'-0"
fiat slab. --- .

Where under a standard -

design with po = 50 psi the 94
resulting section is as follows: 19"

Now consider the some , •_
span covered with a thin steei A 08 in2/ft
plate. 1 1/s4 teel plate ,

Assume that when the load I'A'.Y/R ' 5

is appl•c the plate will yield into 15'-O" 15'(05a circular arc. Consider afree • ••-J - •- -•_

body of the ;oaded section, as

shown on the next page.

7



By static Equilibriu rr. /\-

F = 0 i

P (L) - 2(10,000 L/2= 0
0

- 10,000 10,000
Po - - or R-

For this particular case of loading: X I R-h

10,000-20Rh
P= 50 psi R=- - 200in.

This determines the Radius as a function of the load only,
independent of the length (L). This condition in itself is
insufficient since no consideration is given to the percent- h
age elongation. To determine this percentage, consider
the equation of the triangle bounded by R and R-h.

2 2 i2L
(R-h)2 = R- L

2 . 2 At yie!d T f t 40,000 (1/4) 10,000 lbs./ih'.h=R-•{2•

221/2

h for this case is given by h 200- [(200) 2 (90)2] 200-178= 22"
Calculation of the percentage of elongation:

% e =-L whereQ is the arc length Q = Rg = (200) 2 tan- (T-) = 187.2"
L of the membrane 178

%e 1.87.2- 180 7.2 0.34=4% O.K.
160 180

Thus it is seen tMat a 1/4" steel iTemarane is capable of resisting as great a load as a 19" reinforced concrete s!ab which
is reinforced at a rate of 4.08 in /fr. The plate contains 3.0 in 2/ft. -- less steel than in the reinforced slab. The strain

of 4% is less than the ultimate urniaxial strain capacity of most structural steel plate.
For increased efficiency of steel membrane, it -ay be used in a biaxial state of stress -- such as that found in a

circular diaphragm, cn example of which follows.

Two-Way Circular Membrane P
Consider a circular plate of diameter L

subjected to a load of po psi and clamped ,i/41
around the circumference. as shown at the

right. I'

S L .

T t = 40,000 (i) = 10,000 lbs.

8
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[ From static equilibrium:

F vr0

L, _ )/2 L 2 N120 (z2 10'000 R 5i()

P 20,000 20,000""o R or R- I

0

ForP =50psi, R =400in. z

rhe same examrles may be solved by 2
v more general approach This approach involves R.
the application of the general membrane theory of shell
structures to the situation presented. An introduction of ,3
this approach to design was made at the Symposium on Shell
Reseorch, Delft, The Netherlands, August 30, 1961 .* The
application at that time was directed toward the "Configirution of
Shell Strictures for Optimum Stress." Basically, the approach involves
the initial assignment of a given final srreus stcte, such as that of constant stress. The search is then made for the shell
structure which exhibits this final state of stress under a previously assigned normal pressure loading.

Consider a free-body of an element of a shell, as shown above. From the equilibrium conditions, if

N1 I N2  + 5 (ccnstant), and 1 12 = N21 : 0

1 1 P
then + 2

Note that In this equation, R1 and R2 are the principal radii of curvature of the final deflected surface. P is the
normal pressure on thie surface cnd S is the membrane tension in dimensions of force per unit length.

An iiIustration of the upplicotion of this equation is now made with reference to the previous two examples.
Al

First example: R2 O o P 0P S = 10.000 lb/in.

'. 1 _. P becomes/' l.•" R R2 S

"P P
1 1 0 1 a

1 1
180" 0

R 10,000
R =50 -200 in., as before.

k3 5

* H. P. Harrenstien, "Configuration of Shell Structures for Optimum Stresses," Proceedings of the Symposium on

Shell Research, Delft, The Netherlands, 1961.

9
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Second Example:

R R R2= RP P0= 50 psi

R1 R, R2 -R, P--P 5op

R2 S 1 10,000 lb/in.

1 I P
2 + becomes

1 2

2S
R = -0

- R ..-- 2(10,000) 400 in.,

k. / 2again, as before.

Obviously, it is as simple to apply the free-body diagram approach as it is to apply the general theory, however
for more complex problems, the general theory must be used in conjunction with numerical solutions on a digital

computer. Appendix A presents this approach, the results of which are abstracted in the following material.

General Theory of Funicular Shells

A shell structure may be defined as a materialization of a curved surface in space. In general, the structure of a
structural component so formed carries its loads primarily by direct stress. By this process, such structures make maximum
use of the material from which they are formed in resisting applied loads (see Appendix B).

As stated before, among the classes of sheli structures that are available for shelter application, there exists those
which initially exhibit uniform direct stress characteristics under certain specifid loadings. These types of shell

structurer possess the maximum possible structural efficiency that a two-dimensioial structure is capable of providing.
A structure which is of one sheet and which exhibits uniform stress characteristic, under normal pressure loading is

defined as a funicular shell. The particular type of such shell structures that are formed when a thin steel plate yields
with "constant" stress under application of a distributed normal pressure is one suci shape and is the subject at hand.

The pressure need not be uniform for the funicular concept to be present.

The exact equation of curvature derived from differential geometry for a function z = f(x,y) is:

1 1 _ x_2 + __xy ___ _p

R1 R 2 [ 2 3//2 T

10



This expression may be written in finite difference

form and solved by iteration techniques on a digital I

computer for certain membrane shapes and specific edge D 1.5 0 I 2 D
conditions. The types considered are shown in Figure 100. 0... -4 -

The non-dimensionalized PD/S versus zc/D curves, which
are shown in Figure 11,are results from the computer study.

Only the curves showing the center deflection are given, ,

but these are the most important as for as des:3n is con- 1

cerned. These curves are based on tWe behavior of a D

rigid-plastic material. However, to use these curves
with any other type of material the only additional /--

information required is the appropriate stress-strain curve L Dj
for the material.

The PD/S vs. zgiD curves are based on the average
stress and average strain across the center of the membrane.
It is known that the strains are not uniform over a
deflected membrane surface (2,3,4). However, as far as
vertical deflections arc concerned, the assumptions of

unifo .n stresses and strains appear justified. D 0
1 0

The only regions where this assumption leads to -_ _A D -

appreciable errors is in the corners of rectangular D z
membranes. If reasonable care is taken during the con-
structior to insure proper full-strength weids and if the I
design strain is reasonable (less than 2.5%) the yielding Ca Edge
membrane structurci element should serve quite well.I Yielding Beam

Either the circular or rectangular problems could be F ie lan Vews

programmed for the computer with a non-uniform lateral Figure 10. Plan Views of Shapes Considered

pressure. Soon, it may be possible to predict the
attenuation of pressure on a yielding
structural element and the resulting I Crl V D
pressure distribution. However, I Circula, Dc. D

in working with yielding elements, 2 Squre D x D
they can be designed as if they -1_0.0
were to be subjected to the full 2 I.5r)D 10.0

uniform lateral pressure. The 4 2 * -

yielding characteristics force the
surface to take the shape it must 5

assu me.
3 C

Although certain metals, PD 4
especially mild steel, have very

large plastic elongation proper.ies 1 0 0-" - ,-'- -,

on uniaxial tests--sometimes P CI //"
greater than 30% strain--this doe: Strain
not rnean the material will admit

such large strains under biaxial 0.5 4-
conditions,. In fact, mst of the
common yielding materials will _

not admit average strains greater
than 9 to 10 percent even in a 0 0
membrcne state of stress. Since a 0 0 04 0 08 0 12 0 1o 0 20

true membrane state of stress may be ,_
difficult, if not impossible to
realize in actual construction, a Figure 11, PD/S versus zc/D Curves

r •!11



maximum design strain of 2.5% is recommended. This strain corresponds to a zciD ratio of about 0.10.

To illustrate the use of these design curves, consider the circular membrane which was solved previously. In that
example

P =P=5psi Yieldinq Membrane
so

D = 15 ft =180 in.

S 10,000 lb/in.

For this case "Shock Isolated' Floor

From Figure 11; zo/D = 0.057, which corresponds to a strain of approximately Yielding Membrane

1%. The center deflection, Zc, is then 0.057 D, or 10.3 in.

Figure 12. Yielding Membrane Shelter
The ultimate strength of this membrane may be easily determined by

entering Figure 11 with a maximum biaxial strain requirement of 2.5%.
For this strain PD/S = 1.5 and zc/D = 0.097. If PD/S = 1.5, then

p_1.5S - 1.5(10, 000) 83 psi

D -- 8o

The center deflection, Zci for this condition is zc = 0.097 (180) = 17.5 in. This example demonstrates the remarkable
reserve strength of these elements.

To achieve the greatest economy and overall toughness of the shelter, it is suggested that the same type of membrane
be used on the floor as on the roof. Figure 12 above, illustrates this concept.

Usually the center deflection to span ratio will be the governing design factor but, also a check should be made to
insure against an excessive pressure increase in the structure which may be induced by the sudden deflection on the roof.

This "back pressure" 2z
should not be greater than M I
4 to 5 psi. The Love lace / / ''
Foundation indicates that A____
this is the threshold of the OF
eardrum damage region.
The back pressure curve
which is shown in Figure 13 D
is for a circular structure h
but will work well for
square areas. If used for CL

other rectangular shapes, -0__ _1_
the actual pressure would 2
be greater than the value -/ __

from the graph resulting in
non-conservative answers. / .
The whole problem of ol.....-<
back pressure can be
ignored if the membrane
has an initial "dish."

00 0.04 0.08 0.12 0.16 0.20 0.24

z
C

Figure 13. Peak Pressure vs. Center Deflection - Circular Membrane

12



Membranes Supported by Yielding Beams

If yielding membranes were used in the
design of blast shelters, it might be advantageous 20191

to use yielding beams as ribs across the membrane 7 9

to decrease the maximum deflections. As with I 1
the yielding membrane itself, the force in the 15 ------
yielding beam would have to be resisted in some O

manner. In the following figures the behavior o-
of such reinforced membranes is indicated.

The PD/S versus zc/D curves (Fi~gures 14, 91

15, and 16) are non-dimensionclized pressure F

versus deflection curves for the points of maximum 0.5 ....

deflection of the membrane and the center points , i Loat i
on the beams for the conditions of edge constraint.
The numbers inside the circles are values of the 0 00. 0 0 0.2

ratio F/SD where: 0 004 0 z,' 01. 0 16 0.20 0.24

PD z

F=strength of beam and membrane Figure 14. S vs. -; Square Membrane with One Edge Beam

S = membrane strength
D = short span distance

The subscripts refer to the locations of the point. 2.0 -

For example, ( 9, 9 refers to the PD/S vs. z/D
curve for the centerlpoint of the membrane, when
the ratio of beam strength to the product of the
membrane strength and the span is one. These
graphs are for symmetrical cases, i.e., it is P0
assumed that the conditions on both sides of the

supporting beams are the same (see Figures 18 and) 0

19).

Boundary Conditions 0 5 9,9

The yielding membrane, to be effective,
must be supported by bounding structural
elements which are capable of absorbing C 0 0 04 00 8 D 0.12 0 16 0.20 0.24

the full thrust of the material, at yield. PD z

For the type of situation shown in the first Figure 15. vs. L; Square Membrane with Beams on

example of Chapter II, the concrete arches S Two Opposite Edges

are well suited to provide the necessary 1" 1 . 9 -
support. For the second example shown in 2) 9,9

Chapter II, other details must be considered. :"0,

The following considers, in detail, examples 
10,-0

of preliminary design solutions to the enumeratedjtypes of boundary support problems (Figure 17): T -- ---

I1 Yielding membranes supported by PD

concrete arch rings 7
2.•o _ Y i e n u t
2I Yielding membranes supported by

straight edge beams3 Yielding membranes supported by3, ve egbesYielding membranes supported by n /i/ Fi i 1(:/'•T';•

curved edge beams 054 Uoi,.,I4. Yielding membranes supported by0
in plane beams 1 -,

5. Yielding membranes supported by 1
membrane elements o0 0 04 0.08 012 0 16 0 2U 0 14

Figure 16. -P- vs. z; Square Membrane with Beams
on Two Adjacent Edges
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Yielding Membranes Supported b4 Concrete Arch Rings (Figure 17a). For an exampie of a supporting reinforced
concrete arch ring for the circular membrane, see the design on page ';. Assume that the span, L, is 30 feet, a con-
siderable span for a 1/4 inch roof structure which supports 50 psi. The edge ring requirement may be determined
approximately as follows:

Consider the section loaded as shown by the full
yield strength of the membrane. Note that at 10,000 lb/in. '" ' i
initial yield, the membrane force is horizontal. M. "

For p'eliminary calculation purposes, assume a -_
square arch of cross secticn b x b and reinforced by L I
mild steel ct a percentage of 4%. A free body diagram of this arch is shown below°.

y E• FF = 0 yield!
x

10,000 lb/in. - 2P = (10,000) (30) (12)
x6

P=1.8x 106 lb.
z

It is assumed that ihe u!timate concrete strength is 3,000 psi and that the yield strength of the reinforcing steel is
40,000 psi. Equation (19-7) of the 1963 code of the American Concrete Institute applies to this situation -- that is, a
",olumn which is under direct compression.

P =0.85f' (A -A )+Ast f
0 c g st st y

where
P is the ultimate axial load
0

f' is the ultimate concrete strength
c

A is the gross sectiong

Ast is the area of the steel, and

f is the yield strength of the steel.
Y

Substituting

2 2A 0.04b and A = bst
we hove222P =0.85f' (b 2-0.04b 2)+0.40b 2f

o c y

Po 0.799 f' b2 + 0.04 f b2 = b2 [.799 (3,000) + .04 (40,000)]

= 3997 b2

Equuting to P:

1.8 x 106 = 3997 b2

2
b = 450.34

b = 21.2 in.

Ast = 0.04 (b 2) = 0.04 (450.34) = 18 on.2

14



I Use, for preliminary purposes, the following section:

1 ,5/16" continuous fillet welds

•=• • . 22"
14

I1/'4" " "",v . • "

22"22

Rue 10,000 ib/in

lRequired bearing area for a=les = 0,00--. 8 in. Try 4 x 4 x 3/4 angles. Check bending stress in outstanding
leg. 19

2000 3 25
Mc_ 70 (3.25) (-:.) 6IIt

4000 21-125 t 2 = .32,000 psi, . •4"1

40,000 = 053

t0.73 in. 5,000 lb/in.

Use 4 x 4 x 3/4" angles with t = 0.75 in. 2,500 psi

Determination of area of reinforcing steel:

Two 4 x 4 x 3/4 angles have an area of 10.88 in

The required Ast is 18 in 2, therefore 7.12 in2 must be added as reinforcement.

If 12 bars are used, As per bar is 0.595 in2 ,

Use 12 07 ý 0.60 in 2 per bar. 225/16" continuous fillet weld

Use #3 ties at 16' as shown.

4x4x3/4 s

S• " "•"22"
j 1/4" embrne Z

1~ #3 t16

1 #7 supporting wall

15
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Yielding Membrane Supported by Straight Edge Beams (Figure 17b). It is logical to consider the method of
supporting rectangular membranes at their outer edges by initially straight steel beams which, on loading, yield inward
much in the same manner as the yielding stiffeninn, ribs,discussed previously. If the design of such are considered, it
becomes obvious that the amount of material required is excessive and such a -upport k impractical. This is demonstroaed
in the following development.

Consider a straight edge member which is loaded by
a uniform membrane tension. Let the span be L between
supports and the tension be S in lb. per in. The situation
is shown, at the right. Under action of force S, the beam f_ - 1
deflects in a circular arc of radius, R, to a maximum
center deflection, h. The beam in this configuration carries a maximum axial load of P lb. A free-body diagram of the
deflected member is shown as follows:

R

P TP EF =0 yields

or
P = SR

For a given steel beam with an area, A, and a yield stress, fy,

P=f A
y

on substitution and aimnplf•ication

A SR

y

Thus, for a given situation, the area of edge beam that is required is only a function of the membrane tension,
the yield stress, and the radius of curvature of the deflected shape. Now, S is the membrane yield tension wh;ch is
f t where t is the thickness of the membrane. On substitution
y

f iR
A=-ý- =tR

y

If limits are established for the axial strain in the
edge beam, say about 10%, then R has a limit based on
this strain. To determine the upper limit of R, which is
actually the minimum value of R, consider the geometry
showAn at the right. The average % strain is

RR
R - L/2 (100)L/2'"Io:oI

Now
k 1 - L/2 (100) 10

R 9 - L/2 =- L

R g = -,1

16



I

but = arc sin L/2 = arc sin -L t 1/4" t 3/8"

Rarc sin 18t 1/2"
arcsn "- 720 16

1 .1 IL I/ I -

12 - . .

arc sin x2- f t 3/4"

The solution to this transcendental 8 - - -

equation is approx'mately x = 0.685. If -/
L/2R = 0.685 for 10% strain, then 6 -

2(.68 0.73 L AIz8k76i i L
and 2 Maxi mum strain 10%k

A =t R = .73tL 0AI

Solutions to this equotion are plotted 20 40 60 80

on the figure at the right. A - area - in2

It is seen that even `:or small spans of around 10 ft., a 1/4 in. membrane requires a steel edge beam of 21.5 in.

in cross section. This assumes, uf course, that the beam is initially straight and that it yields to a limited maximum
uniaxial strain of 10%.

Yielding Membranes Supported by Curved Edge Beams (Figure 17c). If the edge beams are ini'iolly curved to
radius, R, they will act more efficiently when the membrane yieiT-Tecause they are not limited to small curvatures,
by strain requirements. For this case, A t R as before. This equation, for various membrane thicknesses, may be
plotted as shown below.

It is observed that a curved 1/4 /8"

member of 5 ft. radius and area
S5 in2would provide support for a 14 I-1/4 in. membrane. This produces I"cuve11l t 3 .

a slight saving in material over the 12 -/4.
lost case, but is much more difficult -
to construct. It is therefor, concluded * 10 ,/-,-- -' ---

th-" "uch support is impractical. I

" 0 -•7 " " I -

0- TT

2.0 20 40 60 8OL 100i

[ A- area - in
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Yieldin• Membrw.es Supported 6y Reinforced Concrefe Aheor Slabs (Figure 17d). One of the nmot practical
olutio-n-s Is- use of reinforced con~crete slobs in ell oij.i porels and chlow tese sloas to resist the membrane thrust of

interior elements through beam oction as deep bea-ms. In this cose, membrone economies will on!y be cohieved if large
numbers oa repetitive boys ore used. The desian of thuse reinforced concrete slobs (deep beams) is fairly routine and
will not be presented here.

Yieldinq Membranes Suppred by Membrane Ele"nts Fiut -. A ,r-ethod of support that seems most

likely is use of yielding membranes supported by membrane
e!ements. At the comners of cubical structures, in whichyield membranes are usea as the exterior structural skin, tf
membrane elements themselves may be used o "corner" y
the thrust.

For this case

F =0 t 2f cosg0t f
x 2y y>

t2 Cos t t2 -P

if t 1.6 -- - I
0 =45° - --

41.2-

tC 0.8---t1 1 I- I
t2  1.4i4 t1  

-8Y-

e--0.4 /

C1

A plot of the relative thicknesses is shown above. -- 0 - -0

For 1/4 in. side membranes, 0.35 in. thick corner . 1.2

membranes ore required. - thickness - in.
"t I vs. f2 for 0 = 450

Membrane Splices. Practical construction considerations, based on limited sizes of available sheet steel,
requiret eof splices on membrane plates. Two types of full strength splices are recommended. They are shown
as follows:

Simple lap splice

Simple butt splice

It is felt that either of these splices can be properly designed arnd constructed to develop the full yield strength
of the membrane plates.

!0 1



I .)

Ib

Ic

Id

Ie

Figure 17. Yielding, Mem~rane Boundary Situatieni

19



L)y.rYmic bests

tGynaric tes'.s were conducted in the University of Arizona blast simulator. This simuiktor is a piane-wave
gen-3rotor powwred by a hydroge-oxygen explosion. The blast charrber, shown it, Figure 20, is a 300 90allon,
8 ft, bay 2.5 ft diameter 'arsk mounted vertically oa' rubber bushings to a heavy corc:rete base. Access to the chamb-er
is achieved by unZ~o,'ing the top -ectior of the tunk and -wingirxj the bottom section and the bose around a pivot,
De' 2.5 It. x 2.5 ft. so:; Sir is th~eni e_ýposed for the placement of model structures, go-oges, and, sand. There is also
o, 14 !n. diameter access :iolc. in the botrom of ihe snit bin and two 4 in. diameter access hoits aind windows in the too
section.I

The b~~mt wcvsi is cuaused by a Siydrogen-oxygen explosiw. detonated by in electric s 'z-rk. Predetermined
qu'ut~ties of hydrager., -3xygen, and air nre measured iti m~e thnree auxiliary tanks on the side of the chomb-er. The
oi.- controls the rise time of the blast wuve. The gases are fed into an evaccoted plastic bag ar the top of the tank.
The explosion. is deton-afed by an ele~ctric spark which is triggered b/ thae same swifclh that starts the recording instruments.
Th:! decay time is controlled by ctja ukb~e exhaust valves and spacing washers between the chamber sections. The
dr~cuy curve is exponertial. The deton~ating e~pcrk and the gas bag are centered in the tank to minimize dynamic
imbalance during tests.

The overpressure'eron~e is from 0 to 50 psi with voaraobI,- rise timnes from less than one millisecond to over cyne-
tenth of a isecond, and -iecay times from one-tenth of a sZcond and up. The blast wL'vCs could be vontrofled to within
10 cercent from test to test. The instrumentation and recording device- sincluded two Statham pressure transducers (0 to
50 pc.), two Tectronix dual bearr oscillators wish cameras, one six-channel Brush recorder, and one two-channel
ýarttxxn recorder,.

T he 'Olad, sirrrt~ator
hai been e-sed to test
y~elding nmembraiie mrodels
above and below .gro-jnd.
The test models were 3.5
to 4.0 inch cytlirders whicii
were zoiistruc ted so that
the edges held c membrane
tightly clamped (Figureý 21).
The investigations were
m~ade- to dete.rmine the
effe-ts of depths of burial
Oild structural flex~biliti
on ihe percentage of loot-' Fgure 18. Square Mvembrane Test Figure 19. Square Membrane with
carried by the yielding Yielding Two Y~elding Beams
elements.

Fromn the tests made
;r. the b~awr chamber, some
insight has ýaeer, gainad
intu the amount of
aitenuariotn of overpressure
which is cnL!sA by Soil
cover. Thf~se t.osts showed
that so'il cover does
attenuate overpressures
a- ~reciably; moinl% due to
an arching action in tho
soil as the membrane yield5.
H-ad these models been
ri~id *hey would hove been
sublecfed to pressures -Jose Figure 2C . Blast Simulator Figure 21 .Model Structure and
to the surface overpressure* Deformed Model ShellIs
As con be sean from the
test evidence, th~e arching

20



action was acting well before the model was
buried one-halt the diameter and at one
d;ameter only one-tenth of the overpressure
is felt by the buried membrane roof (Figure 22).

These results are not useable for pro- 1.0 - .
totype predictions because the principles of
similitude are no" satisfied. They do serve
to illustrate the attenuation due to soil

arching. The arching, in this case, hasas a
point of support, the edge ring of the model
structure. Had this edge ring not been
present,;he soil would have arched from a
point outside the structure; but the arch 0.-
would have been longer and flatter and thus

the attenuation of overpressure would have
been less.

In tests with the circular models, it -- _ '
was noted that the deflected shape was nearly
spherical except that near the edges where
the soil arch was supported by the structure 0
the curvature was greater. The roaci of 0 1 2

curvature along a diameter was measured 2 (diameters of burial)

and by making use of the basic formu!a 
d

1I P Figure 22. Attenuation of Pressure with Depth

+ 2 S

a fairly accurate distribution of the pressure
across the membrane was determined R
(Figure 23). Note: a thin rubber sheet r
was placed over the surface of the sand to

prevent the blast vave from permeating 100
the pores.

Tests have shown that yielding membranes
have the ability to deform dynamic overpressures. u

It has been noted in the test conducted at the
University of Arizona that there is 10 to 20 0
percent increase in deflection under a dynamic

load as compared to the same magnitude of 0
overpressure applied statically. 0 0.50 1.00 1:50 2.00

Distance From Center, r (in.)

20]

0

0 0.50 1.00 1.50 2.00

Distance From Center, r (in.)

Figure 23 Radius of Curvature and Pressure Distribution across
a Circular Membrane with Soil Cover
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CHAPTER IV

"SUMMARY AND CONCLUSIONS

Yielding membranes as elements of shelters to protect civilian population from overpressure effects of nuclear

weapons are definitely feasible. As indicated on page 8 of this report, under certain conditions a 1/4 in. thick steel
membrane will carry more !oad than a 19 in. thick concrete slab which is reinforced with steel at a rate of 4.08 in. 2/ft.
The membrane itself uses less steel than the reinforced concree slab. Favorable soil-structure interaction effects are
induced, by these elements, in all situations.

Construction difficulties, brought about by pre-dishing, may be overcome as more in.formation is obtained on
the response of flat membranes to blast overpressures. Problems cssociated with corrosion, and continuity of welds, may
"be largely overcome by using (as pseudo-membranes) thin concrete slabs which are reinforced by a closely spaced wire
mesh which runs continuously in both directions. The wire mesh then acts as the membrane and the concrete as the
corrosion resisting and local transfer medium.

Boundary supports and full scale testing are items that need more attention and are suggested as parts of future
inyestigations. In addition, analytical studies on strain variations and time response functions to dynamic loads are
needed.

At the present time, however, the response of these structures has been sufficiently bounded to warrant their
use in civil defense situations. The methods used in this feasibility study are as valid ond reliable as any that are
currently being used on the design and analysis of conventional types of structures. It is recommended that the Office

* of Civil Defense seriously consider adding these types of slutions to the ever expanding inventory of such solutionsý

1.



APPENDIX A

YIELDING MEMW`RýNE FORCES

Introduction

This Appendix considers the configuration taken by yielding membranes under uniform lateral pressure loading.
It deals with rectar.gular membranes which are rigidly suppurted on four sides anl rectangular membranes which have one
or more sides supported by yielding supports, in the form uf beams which deflect as the membrane deflects. Some of the
results of this effort were presented in Chapter III, but the complete details are included in this section.

The deflecticns of the membrane, are very lorge, producing center deflection-to-spon ratios as large as 0.20
which results in average biaxicl struins a! large as 10 percent. The result is that bending forces in the membrane are of
little importance and membrane for.es predominate.

If D is defined as the short-span distance, the types of membranes considered are: (1) D x D with four edges
clamped, (2) 1.5 D x D with four edges clamped, (3) 2 D x D with four edges clamped, ('-, D x D with a plastic edge
beam on one side and clamped on the other three sides, (5) D x D with plastic edge beams on two sides and clamped on
two sides, (6) D x D with plastic edge beams on three sides and one side clamped, and (7) plastic edge beams on all four
sides, Plan views of the shcpes are shown in Figure A-1.

Only membrane forces ore considered. Further, the assumption is made that the same membrane stress level
exists .t all points on the resulting surface. The problem considered .n this investigation ýnvolves uniform lateral pressure
only. However, the differential equations developed can be soived for other types of lateral loadings.

Yielding Membrane Theory

Formulation of the Problem. To properly predict the configuration of yielding membranes under normal pressure
loading, it is necessary to develop adequate theories. Few of the theories presented in Historical Review (Appendix D)
are directly applicable to the problem at hand. However, miror modifications to them allow appliability. The work
which follows presents these modifications,

NOTATION

c ........ Width of plate or radius of circular plate

L ........ Length of plate

c,d ...... Dimensions oi membrane

D ....... Span of membrane or flexural rigidity of plate

E ....... Modulus of Elasticity

6 ....... Strain

F ....... Force in yielding beam or stress function

h ........ Thickness of plate, x direction grid size

i ........ Grid poirt in x direction

i ........ Grid point in y direction

k ........ y direction grid size

L ........ Length of membrane

N ....... Normal force per unit length

P ........ Pressure

r. ........ Poisson's ratio

R ........ Radius of curvature

S ........ Membrane strength
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tr ........ Soress

T-, ....... Constant stress (usually the yield stress)

t ........ Thickness of membrane

u,v,w .... Components of displacements in x,y,z directions, respectively

x, y, z .... Rectangular coordinates

z ....... Vertical deflection in center of membrane

z ...... Vertical def!ection at grid point, x = i, y =
aI,

T (2)(3

"/7777////-/7/ ,//77,///

KD-- H-i.5D--- K-2 -AD2

(4) (5)

/ _L._77

(5) / r1 (6)

D

/I7/77777

(7) T ~Clamped Edge
"7

______ Yielding Beiam

D --- )

Figure A-i . Plan Viewvs of the Shapes Considered

A-2



The formulation of the basic equation of membrane shelis is well known. From the statics of a membrane shell
this equation of equilibrium is obtained

NI N2

2- 7 - P (3

If it is assumed that the entire membrane is at the same stress ievel S such that N1 = N 2 S*, this equation of

equilibrium becomes

I1 P3 (2)

1 '2

The linear theory of membrane shells uses this approximation to the curvature

1 2 2 P3
1 - - (3)o,1 T-7 -S73"

which is Poisson's equation. Von Karman's equations under the assumption of a uniform stress level in a membrane

reduce to
22 <2 P3

- - -7 (4)
dx

To arrive at the exact expression for the mean curvature of a surface is a problem of differential geometry.

M I( , l,zi) Y

x- Y " ý Fo Secant
o~ I (5)

Thee tyangen to a curvenateso a point Moi the Iureithing polusito ofdnguo the seattruhMandapoete h.ofthhe Rsac et , y-y

whe he tyandent to ar cordiates a point ons the cv their valuesi of pn u the pecantthrougManrapinte h

cuH.eP.IHarproenstie as aConfiurtio ofThel Structures o fo Op anetimu thresses ," ProeeigofteSm sumn

Shell xe, ad zarc oordinftTeso N atherlnds 1961. rvtervausdpndn pn h aar,2e
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A tangent line to a curve upon a sux-face is called a "tangent line to the surface" at the point of contact. It is
evident that there is an infini.e number of tangent lines to a surface at any point. However, all of these lines lie in a
plane called the "tangent plane" which is tangent to the surface ot the point. If the equation of the curve, C, in
curvilinear coordinates is / = f(u), then the above equations may be written

o " + f x ý (6)

y -Yo h Y du (7)

C)

Z- zo :h( z 6 , z 6 du_
zd u I (8)

where the prime indicates differentiation. In order to obtain the locus of these tangent lines, eliminate f' and h from
these equations. This gives

X - X 0 y -YO Z - £

) cx y az 0 (9)

6 x y dz

which is evidently the equation of a plane through M.

The equation of the tangent plane may be written as

(x-x ) X y ) Y (z- z) Z ý 0 (10)

Now define

2 2 2

E x (1

F d (X 6 y 3y 6 z az
- u- dv 4 U V

x 2 2 2

H JEG - F2
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o y z

C)z ),

Tu a

Y= a dz ax

c~x 3y

Z=R ox 6 y

v T

The positive direction of the normal-to-the-tangent plane is defined to be that for which the functions X, Y and Z are
the direction cosines,

Consider any curve, C, on a surface, S, through a point, M. The direction of its tangent, MT, is determined
by a value, dv/du. Let 0 denote the angle which the positive direction of the normal to the surface makes with the
positive direction of the principal normal to C at M, angles being measured toward the positive binormal . Thus

d 2yrdy x Zdd2zd (12)Coase r X -T I Y -7 .d--T(2

where r is the radius of curvature cf the arc of C. In terms of du/ds and dv/ds, the derivatives in the parenthesis have
the forms

2x . d2 2 x2 du)2 2
d 7 - - -7 d 2 d ua d vC; - -T t -du ud dv c 2ds" ru) U -d~ v u, '--

c) x d2 u c x j2 v
Y~+ - -1-(13)a u drs 2 v ds

Now define:

2 x2 + a2z

2 2 2

D X •x + y 1

D x: 61x Y o2 y Z 2) --2

6 u- u -v '-u 6v (14)

C)2 2
D" X -- 7-- f Y Y~- zvy" cv r) v
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Making these changes

Cos - r Ddu2 - 2 D' du dv , D" dv 2  (15)

E du*+ 2 Fdudv+ Gdv2

C'3nsider the tangent curve in which the surface is cut by the plone determined by MT and the normal to the
surface at M, called the "notmal section" tangent to MT, and let rn denote its radius. Since the right-hand member
of the above equation is the some for C and the normal section tangent to it,

Cose e (16)
r r n

where e is +I or -1, depending on whether 9 is less than or greater than a right angle. The radii r and rn are positive.

Now, let us introduce a new function R which is equal to rn when 0 !E . 1r/2, and equal to -rn when
?r/2 ! 9 _ r , and call it the "radius of normal curvature" of the surface for the given direction MT. As defined:

= D du2 2D'dudv D"dv2  (17)

E Edu2+2Fdudv+ Gdv2

or on substituting t dv/du

I D 2D't + D"t

7 E + 2 Ft4Gt (18)

To obtain the values of t for which R is a maximum or minimum, differentiate this expression with respect to t
and set the result equal to zero. This gives

0 = (D' + D't) (E , 2 Ft Gt2 - (F C Gt) (D + 2 D't D"t2) (19)

This is a quadratic in t. It can be shown that at every ordinary point of a surface there is a direction for whicl' the
radius of normal curvature is a maximum and a direction for vAhich it is a minimum, and they are at right angles to one
another.

Thus the two values of R become

I D' O D+ t and I D 4 D't (20),T" = T 4• Ct and ý = _1

and the following relations hold between the principle radii and the corresponding values of t

E * Ft- R (D, D's) 0
(21)

F Gt - R (D'- D"i) - 0

Eliminating t from these equations

0 - (D O"- D'2) R 2-(ED'" , G -2 FD')R# (EG- F2) (22)

The roots of this equation are the principal radii. These principal radii ore denoted by RI and R2 and thus:

A-6



I ED" GD - 2FD'

1 2 H (3

1DD" - L)12

1 R2 H --

Now, for the case of a surface defined by z -zf(x,y), the following v',lues ore obtained-.

I~= 2 2jp~217 * D -/

Y-q D (4I ( 2 p2q2)'/ (I *2 *q2T7 (24)

(I 2 2 1 ,7l 2 D " -- , T

where(1 2 7P

I q2
~T~y

a - t h s( 1I o t - 2 p q s ( I , q 2 r 
(2 5 )

0 P

) I S O c o n ~ t o n t .

Using thý excct expression) for the normal curvatures the equation of equilibrium beconmes:

2 2)-1

"er P isteuniform !cterl pr'essure Jenata-d bY P 3 eviowd:. -

equctins ofthis ypo. he "disi ;%dlsimveiý not-linvar, inovriprodijci and po,-*n of partial drviv
The rmett-,d Pmsonted I-ero coosists of deiigt"* pairtial -deiaie nteequat~on in larrm s of initodfte n.

oditert~ng the resuiti'-g equati,.m b) Ifiv Netorn-Ropkson tecreliquo to outain u decription of 0'r lurfoco.
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An over-relaxation procedure was used to speed the iterative process. This iteration procedure was too involved
to attempt by desk calcuiator so a high-speed digital computer was used. The procedure was programmed in basic Fortran
computer lungqage for the IBM 709 computer at the University of Arizona. The comouter program is presented in
Appendix B.

Yieiding Edge Beams. In :'tuations where the boundar:s are .Ixed, z = 0 on the boundary is a w.fficient
condition to admit a unique solution. However, in cases whLre these boundaries yield, as in the case of an edge beam
which yialds normal to the initial plane of the surface, this condition is not valid.

In this case the differential equation governing the behavior of this plastic beam across the membrane is

F 2 z 2 S Za 22

Cyx
_______ _____P_ W p =o (27)

where F is the plastic strength of beam plus membrane strength and W is the beam width. rhe second term is a load term
giving the contribution of the pull of the membrane to the shape of the plastic beam. The 2 in the numerator arises
because the mnembrane is considered symmetrical about the beam.

This equation assumes that the coordinates extend to the edge of the beam. Thus F is actually the strength of
the beam and the membrane combined, which must to taken into account with wide beams, However, in the computer
study, the coordinates were taken from the center of the beam, the beam w'dth was assumed zero, and F became the
strength of the beam alone. This assumption results in less than two percent error in most cases.

Finite Difference Equations. The equations presented for the membrane and the yielding edge beams were
written in finite di ference form in order to reduce the differential equations to more easily handled algebraic equations.
The computer programs were written using the finite difference forms of equations. In the programs involving the yk!4 ing
edge beams the two sets of equations were solved simultaneously.

The membrane equation written In terms of finite d7 'ferences about a point involves nine points as shown in
Figure A-2. In this case there is no need to write a special finite !ifterence equation to handle points along the
boundaries because the boundary points are either zero along the clamped edges or a point on a yielding beam. The
points on the yielding beems are obtained by soiutions of the beam equation.

The partial derivatives written in finite difference
form are

y

2h r-•L] = 2h D z. = z (O)h2i) x X r a l a o

2k D- z z b (0) k2

h xD z. z 2 z. z + (o)h- (28) f go. _

yy I a b b bb br

4hk DxyZ. Z or Zal Zbr + Zbl f (0) hk
Figure A-2. Finite Difference Grid Arrangement
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In finite difference form the membrane equilibrium equation becomes

[4k 2 + (z - Zb) 21 [zr - 2 z i 1 [4 A2 (Z r - 1) 21 [Z - 2 z* Zbl

(Z -z)(z - )(Z z z ) (29)
r I a ob r al br ' bl

+ p [4h2k2+k2(zZ)(]Z2 3/2 0+ + k2(zr - Zl)2 (za . z b)2 3/2 = 0

For a square mesh, h = k;

[4h2n (z .. b ] [Zr -2 z" [4h2 +r - zl)2] [za - 2zi + Zb]

S()(30)
(zr (zI a o b) (Z or z zbr ' zb,)

P h [2 f Zl)2 213"2

If k = (d/c)h, i.e., if there are an equal number of divisio.i- i each direction, thern

d 2 h2

+ [4h 2(Zr - 22z.fzl

(31)

- " (zr - 2) (za - zb) (zar - Za - br zbI)

P h (c) r 4 (d) h2 h2 d( ) (z -z )2 (z 7 )21 2/3 0
L C-- L r "b :

Note that c is the x-dimension of the meumbrane and d is the y-dimer.5ion.

In finilte difference form tlie yielding beam equatio, is

8Fk (z -2zi -z 2S(z -z)b I i P- 0 (32)

[4k 2 + (z z 7T 122

Where

F Strength in beam and rembrane

S Strength in ni.mbrane

Lateral presiure

Width of beam

h Grid si.:e in x direcio.to

k Grid 6ize in y die.tion

z. Defletion at point i
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"Computer Results. The membrane equation in finite difference form (Equaton 29) was soived by the computer
usiny a modified Newton-Raph:on technique. Pressure-to-membrane strength ratios cf from zero to three were used in
ihe computer programs. In the cases of membranes supported by yielding edge beims, Equations 29 and 32 were solved
simultaneously. Values or the ratio of beam strength to the product of the membrane strength and span of 0.5, 1 .0 and
2.0 were used in the programs.

The i!Iustrations in this section are the result of the computer study. Curves are computed ior a uniform stress
distribution over the entire surface. However, this as:umption does not noticeably affect the center deflection values
as will be shown in the comparison of resuits section. In fact, the only creas this assumption nffects, to any degree,
is the comers.

These curves of PD/S versus zI/D are general curves ano may be used for any ductile material if the biaxial
stress-strain curve for the material is available. Only in the case of a rigid-plastic material can the S value be
considered a constant.

Figure A-3 shows the standard
gr;d layout used in all of the following
graphs, tables and discussions. It was
found that a 16 x 16 grid gave results
within the desired degree of accuracy. 0 ,17 5,17 9,17 13o]7 17,17
In the follow'ing z. . means zxy° The

PD/S versus zc/D curves (Figures A-4
through A-9) are ron-dimensionalized
pressure versus center deflection curves
for membranes with clamped edges. The
PD/S versus z/D ;:urves (Figuret. A-10
through A-16) are rin-dimensiona!ized
pressure versus deflection curves for the 1 1,13 15,13 1,13 13,13 17,13
points of maximum deflection of the - -- -T

membrane and center points on the beams
for various conditions of edge constraint. I I
The numbers inside the circles are values
of the ratio F/SD, where I ! I

F = Strength of beam and
membrane 1,9 15,9 9,9 113,9 17,9

-- Membrane strength

D = Short span distance I I I

The su'lcripts on the circles refer to the I I
location of the2oint (see Figure A-3). I I
For example, (13 9 refers to the PD/S 1,5 •,5 99,5 |13,5 17,5
versus z/D curve r the center point of --
the membrane, when the ratio of edge I I I
beam strength to the nroduct of the
membrane strength and the span is one. I I

The graphs and tables, shown I
relating to membranes supported by I I I
various y;elding edge beam arrangements, II I PP 1 19, I 113 1 7, 1
are for symmetrical cases. That is, it is __W t _ _
assumed that the conditions on both x
sides of the yielding, beams are the same. -

These tables and graphs are useful in D
prelimir'-iry design. The actual values
of membrane strength and beam strengths
involved in a design should be fed into Figure A-3. Standard Grid Layout
a cornFuter program to determine the
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2.0 -1r10fi.0
/

1.5 • _.___ _Z / .

C

PD /1
/ Siroin,,

I I

00.04 0.08 0.12 0.16 0.20

Figure A-4o PD/S versus zc/D Curve for a Circular Membrane

TABLE

Summary of Computer Results; Membranes with Clamped Edges

0.5 x.1 1 1 t w I -[ IOx
PD - - _- ....

T. z!D Strain z./Dc Strain zd,/D Stromin z~/D Strain zi/D Strain Iz/D Stroin

0.25 .018 0.08 .018 0.10 .025 017 .028 0.22 .031 0 .25 .031 0.26

0.50 .031 0.25 .037 0.38 .051 0.70 .057 j0.88 .062 1.02 .06.4 1.07

0•.75, .044 0.52 .055 0.88 .077 1.59 087 2.03 .095 2.3,8 .097 2.49

1,00 .06.4 1.07 .075 1.58 .104 2.90' .19 J3.74 .130: 4.44 .134• 4.v68

1 .25 .080 L 65 .095 2.52 .132 4.69 .15•2 62 3 .169 7.43 . 175 7.93

1.°75 .||5 :.i.4O 137 5.24 .196 10.16 .233 14.00 .269 13.33• .293 21.36

2.50 .175 8.00 .2;3 12.42 .332 27.99 .. -.

____ __ _ _
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Figure A-5. PD/S vemus zc /D Curve for a Square Membrane
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Figure A-6. PD/S versus ze /D Curve for a 1.5 x I Membrane
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Figure A-7. PD/S versus z /D Curve for a 2.0 x I Membrane
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Figure A.-8. PD/S versus z C"'D Curve for a 3.0 Y, I Memkr-jne
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Figure A -9. PD/s versus zc/D Curve for an co x 1 Membrane
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Figure A-10. PD/S versus z /D Composit, Cur,ýc
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actual deflections of the surface. TABLE 6
However, although the edge conditions Summary of Computer Results - Square Membrane with
and strengths and loadings of one panel Yielding Beams on Four Edges
affect the adjacent panels, it F!, not
likely that they will affect pane-s
farther away to any significant extent.
Conservative use of the irformation given y
here will allow membrane structures to be
designed within the desired degree of - 1Corners at 0.0accuracy *j= S1,9 9,9 

max z9,9
Equivalent Curves for Other Beo Wit"ý0

Materials. The P/vus - Beam dth -0.0
curves are completely general end nay
be used with any type of ductile
material. For a rigid-plastic material x

,he S ,alue is a constant which simplifies Fx
the use of the firaph3. If these curves F PD z% Strain 1,9 % Strain
are used a number of times with a certain _M -7 + 1U- along 1--9 5 along 1-1
materiai, it may be advantageous to 0.5 .0819 0.20 .0538 0.804
choose some constant S value (sý,,h as
the yield strength) and draiw a ew .0.17)9 0.83 .1148 3.652
"equivalent rigid-plastic" design curve. 0. 1.5 .2855 1.96 .1976 10.741

This eliminates unnecessary reference
back to the biaxiao stress-strain curve, 2.0 - - -

for the material, to obtain an S value at .. . ..

var;os strain level:. 0.5 .0611 0-27 .0295 0.229
1.0 .1244 1.10 .0601 0.951

To conwsruct this "equivalent 1.0

rigid-plastic" c!v.,e, a stress .alue, Oc-, 1.5 .1918 2.60 .092S 2.259

is chosen at which the t£enural PD/S 
.1290 4.342

versus z. /D curve is to coincide with 2.0 2666

that of tne given material (paint A of 0.5 .0497 I0.32 .0156 0.063
Figure A-17). A tahle with the
following headings is then constructed 1.0 .1005 1.30 .0315 0.254
(Table 7). Columns 1, 2,and 3 ore 2.03.08 .0475 0.580
obtained by '.ios..q a number of points

from the general versuis zc/D versus 2.0 .2117 5.90 .0639 I.048
soairn curve. A. . three or four point;_
should be used in me portion belo"
PD/S = 0.25. From,. the biaxiai Atres,-
strain curve, stress values 're found
which coincide with the strains in TABLE 7
column 3. The values of column I are
multiplied by the values of column 4 Column Headings for Equivalent-Rigid-Pias~ic Curves
and divided by the "constant" stress ._c"
A plot of colurmn 2 versus column 5 -

will result in an "equivalent ryA'1- Column No. 1 2 3 4 5

plastic" PD/S versus zc/D curve for IP - -__PD

the given mncterial. The new constant Heading PD c strain ail 0nP
S value is Oct. sress 0 c S
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Experimental Analysis

Introducticn. Tests were conducted on various membrane shapes. These tests were designed to obtain membrane
deflection data wi -ch could be used to cherk the occuracy of the computer results and compare with the predicted
deflections. Tests were run on 1 x1 i1 1.5 x 1 and 2 x i clamped edge membranes. Tests on membranes with yielding
beams included a I x I membrane with 2 beams, 1.5 x 1 membrane with 2 and 3 beams and 2 x 1 membranes with 1, 3
and 4 beams.

Test Equipment. A testing device was constructed to test the membranes. The test bed was a 25 x 15 x 3/4 in.
high strengtaluminum plate. Edge beams 2-1/2 x 3/4 in. thick were bolted to the test bed by 1/2 In. cap screws
spaced 1 in. apart. These edge beams were used to clamp the membrane in place. Fluid pressure was applied to the
membrane through a hole in the test bed. One edge beam could be moved so that membranes of 10 x 10 in., 10 x 15 in.,
and 10 x 20 in, could be tested (see Chapter III).

Two tracks ran parallel to the lon side the test bed. A framework was fabricated t,b span from one side to the
other over the membrane. This framework held a sliding bar to which was fastened a 2 in. dial gage which measured
within 0.001 in.

The dial gage was positioned crosswise on the membrane by means of a calibrated screw thread which moved
the sliding bar. The entire framework was positioned lengthwise on the membrane by means of another calibrated screw
thread. Great core was taken to ensure that the tracks were level, the sliding bar was parallel to the test bed, and
the gage was dead cente, on the test bed when the screw threads were positioned. This arrangement permitted test
results accurate within 0.002 in. in the vertical direction, and within 0.005 in, in the horizontal direction.

Water pressure was applied to the membrane as the loading medium. This reduced the danger to personnel
which could have been present with air pressure only. Air under pressure stores energy which would have been suddenly
released when the shell burst and could have caused some shell fragments to be thrown about, A surplus oxygen tank

"PD 8 PD

L~>wi TPP

2.0 -40 o.o
Rigi I/Plast/

/ -- S = Constant)

1.5 / 7.5

Strain
PD So Aluminum

,S aries wilh strain)
).0 -5.0 a

"0.5 2.5

0
0 0.04 0.08 0.12 0.16 0.20

Figure A-17. "Equivalent Rigid-Plastic" PD/S versus zc/D Curve for a
Circular Membrane
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was used as a reservoir and air pressuJre to water pressure conversion unit. A sensitive pressure test gage was attached to
the tank. Also co 60 psi pressure cell, in conjunction with a strain box, was used to record the pressure. The pressure
was measured to within 0.015 psi.

Test Procedure. Test memkranes were held flat by a styrofoam block as the edge beams were attached. The
water leve-'in the reservoir tank was at the level of '- e test bed at the start of each test. At this point all gages and
screw threads were checked to be certain they were zeroed. Deflection measurements were taken at set grid points.
(Each membrane was divided into 16 grids each direct~on and measurements were made on 1/4 or 1/2 of the membrane
depending upon the symmetry involved.) As a result, either 64 or 128 deflection readings were taken at each pressure
level. There were usually five or six pressure levels in each test. Test results were reproduceable and so, in the latter
tests, only one t st was made on each membrane shape.

Yielding beams were simulated by No. 8 soft steel wire. They were stretched by means of a simple jacking
device to assure that they were well into the plastic range before the test was started. In this manner the load-
displacement curve for the beam was essentially horizontal, and the load in the beam was relatively independent of the
strain and could be more closely approximated. All the initial strain during testing was assumed to take place across
the width at the shell because the edge beams clamped down on the wire as well as the membrane. This strain was
obtained from the zc/D versus strain curves. At points where the wires crossed, a small device bent one wire over the
other so that the wirbs themselves were in the same plaie. The added strain, caused by bending the one wire, was
taken into account.

The yielding beam tests were all of a type in which sag was permitted at points where the beams crossed.
The apparatus would have been unnecessarily cluttered if a heavy bar had been used to hold those points at zero
deflection.

Experimental Observations. It was noted that us the membrane deformed the material seemed to stretch quite
unevenly -- even though, at the same time, the deflections were very regular and predictable. It could be explained
by the nature of the thin metal membranes -- copper, aluminum, and steel all acted the same way -- in that the
membranes seemed to thin out along irregular paths leaving thicker areas surrounded by thinner areas. As the material
was stretched, the thicker areas gradually decreased in size and finally, just before failure, most of the earlier thick
areas had thinned. It seemed that this thinning of the material occurred at first where the strains were greater (at the
center and about half way toward the center from each edge. As the material was stretched the thinner regions were
strained into the strain-hardening region and thus reached a point where the membrane Force in the thinner portions
became equal to the force in the thicker, less strained, portions; in effect equalizing the membrane force in almost
the entire membrane. The areas in the corners of the rectangular shapes were the last to be strained ir, , the plastic

resion. Also, "t was noted that the circular tests (used to obtain the biaxial stress-strain curve) the straining was
regular and more uniform.

In an attempt to measure the strain distribution over the shell surface~a photo grid of 20 lines to the inch was
f;xed on the surface of the clamped edge membranes. Near the edge, the strain becomes more uniaxial than baxial;
therefore, in order to maintain the uniform stress level, I!ie membrane must strain more near the edges (see Figure A-18).

As is shown in Figure A-18, the stress does not wary much even though the strain does vary considerably. The
points in the square symbol are the stresses taken from the uniaxial stress-strain curve. As can be observed, the uniaxial
stress at the edqe is the same value as the biaxial s~ress at the center. This is another point in favor of the uniform-
stress-distribution assumption. The significance of this graph is also considered later with material on comparison ofComputer and Test Results.

Because of the irregular strain distribution and the apparent ability of the material to equalize the membrane
forces, it seers that the assumption of a uniform stress distribution may be applicable. This assumption obviously results
in some error in the values of the displacement in the corners of a rectangular membrane. The amount of error and the
region it involves becomes apparent in Computer and Test Results comparison.

The yielding beams strained fairly uniformly across the span. When the center deflection of the beam beccme
larger than one inch, straining began to localize near the edges. Failure did occur in the wire during one of the tests
and, as anticipated, it failed near the edge due to a combination of tensile and bending strains.

The stress-strain curves for 'he membrane material are shown in Figures A-19 and A-20. The material used
was annealed steel sheet 0.004 in. thick. The load-strain curve for the yielding beam material (No. 8 soft, drawn,
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Figure A-19. Uniaxial Stress-Strain Curve for Membrane Test Material
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fencing wire) is shown in Figure A-21 . The biaxial stress-strain curve is an average s'ress, average strain curve
computed by assuming spherical deformation over a circular membrane. This results in the following equations:

Strain: arctaoi -1 (33)

Radius of Curvature r r c -. " (34)

Pr (Ir z )

Membrane Strength -P T " (35)
c C

The deformation was spherical -- at least to within the least count if the measuring system which was 0.001 in.
Although the strains may not be uniform, they were assumed to be for the computation of the biaxial stress-strain curve
because this was to be the assumption used in the rectangular membranes.

The stress-strain curves and the membrane tests were run at the same strain rates -- zero stain rate. At each
load level the deflections were allowed to stabilize before readings wvere taken. In this way, the discrepancies, which
may have arisen due to unequal strain rates, were minimized.

The deflection readings on the membranes were tkane with the pressure held constant so the deflections, and
thus the strains, included both the elastic and plastic portions. This is what was intended since a normal stress-strain

50

•-41. 3 ksli

40 - -t_.. . . . ... .

30

20
> ,°o[ -[- --t

0 0.02 0.04 0.06 0.08 0.10

Average Strain (ir%/in)

Figure A-20. Biaxial Stress-Strain Curve for Membrane Test Material
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curve includes both portions. However, as a note of interest, the pressure was relieved 0 number of times during various
tests to get an indication as to the effect of the elastic strains on the deflectioncs. When the t)ressure was relieved the
decrease in the amount of deflection was 100 percent up to zc/D - 0.023, 50 percent at zc/D = 0.030, 10 percent at
zc/D = 0.073, 5 percent at z/D ý 0.103, and 2 percent at zc/D ý 0.163. These can also be obtained by using the
biaxicl yield strain of 0.0015 in/in and the strain versus zc/D curves.

Membrane Boundary Conditions. The membrane forces are independent of bending and are whol!y defined by
the conditioo n static equilibrium. However, the reactive forces and deformation obtained by the use of the membrane
theory at the shell's boundary usually become incompatible with the actual boundary conditions.

As will be shown, there is no doubt about the membrane state of stress existing in the main portion of the shell.
However, very near the boundary the clamped edge causes a narrow band in which the curvature is of the opposite sign
from that of the main portion of the membrane. In this region, then, there are large bending and shearing stresses.
Fortunately, this region i, of the order of thickness of the membrane, which in the tests was opny 0.004 in.; or more
accurately, the boundary layer would beN[RiT, which in the tests would only be V .03(.004) in. 7Tor 0.01 in.
Because, in this edge region, bending stresses and shear stresses exist as well as the membrane stresses; it is very likely
that this is where failure will occur first.

If the strain present in the membrane is broken into two parts, el due to tension and et due to bending, then
the relative amounts of each can be determined from the deflected shape. If a circular deflectelshape is assumed for
this purpose it will be a simple matter to determine *j and f2, Choosing zc = center deflection, D span,
R = radius of curvcture, t= thickness of the membrane, then it can be shown that

2RD

2- arcsin - (36)

and

(:37)
2

2.0 - - -- --- - -

A-2

,k -L _ _ -.. 1. -
-I ._ . *0_
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For the tests D = 10 in. and t = 0.004 in. TABLE 8
Table 8 is presented for the center portion Strains in Center Portion of Membrane
of the membrane shell.

This shows the insignificance of the ZC/D R (in) I 1 (membrane) " 2 (bending)

bending strain over the major portion of the
shell area. Also if R1, R2 - 0 bending stresses .05 2500 .006 .0000008
are not restricted to the edge zone of the shell.
In this case, howev'o-, R and R2 are both of the .10 1250 .027 .0000016
same 3ign; thus R1 R2 k, 0 and the bending .15 833 .059 .0000024
stresses are restricted to the edge zone. Just
at the edge of the membrane the curvatures .20 626 .101 .0000032
measured in the deformed shells were as small .25 500 .158 .0000040
as 0.03 in. This occurred at the midpoint of
the longer edge. From Figure A-22

Edge Beam
t

IC = (R +7-)/9 , 1 0 (R t t
0 ~RI

t= 0.004' (39)

R = 0. 03' a I e

and Test Bed

Figure A-22. Edge Conditions
b -I ti72 0 0.002 : 0.0625 irw/in.

This results in an 02 at the center of the clamped edges on the order of 0.0625 in/in, just before failure. The shells
usually failed along the edge whei the zciD ratio was somewhat ever 0.20. At failure, then, the total strain at the edge

was 4 I + " 2 = 0.1635.

This rough calculation of the strain existing at the clamped edge at failure indicates only that the strain would be
increased by the flexure occurring at the boundary. However, using a Poisson's ratio of 1/2, which would be valid in the
plastic range, it can be shown that the maximum biaxial strain should be only t'vo-thirds of the maximum uniaxial strain.
This explains why the circular membrane tests failed at strains of about 10 percent; whereas the uniaxial test specimens
failed at strains of 16 to 17 percent. The circular membranes did not fail at the edges but rather at some point of weakness
in the material. This indicates that, although the rectangular membranes failed at the edges, they were near failure due
to biaxial strains in the center portion of the membrane.

To prevent premature failure at the edges of a membrane, a rounded edge of some type must be provided. 1i the
tests, the edge beams were purposely rounded to retard failure at the edges and, yet, the rounding was not 3reat er.,cugh
to effect the deflection readings or the dimension of the span.

Analytical and Experimental Comparisons

Updating Previous Work. From published results of t t4 conducted on circular membranes and analyticai studies
on circular membrnes an accurate check of the PD/S venus zo/D curve for a circular membrane may be obtained. This is
shown in Figure A-23 and Tables 9 and 10. Both of these studies attempted to acquire stress and strain distributions over
the membrane surface. In order to correlate with the present results the average stress in the membrane was used. Note
that the results correspond very well in the region below a PD/S value of 1.5; above this point the membranes are
approaching the "instability strain" or the strain at which a secondary bulge forms at the crown. The greater error is
found in thib upper region because at the time this secondary bulge forms a noticeable leveling off occurs in the pressure
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versus deflection curve. The PD/S versus z,//D curves are not meant to account for this loss in membrane strength --
similar to the decrease in stress just before failure on a stress-strain curve for ductile materials. Failure follows soon after
this "instability strain" is reached.

I Test results for the deflection of square clamped plates under uniform lateral load included one test in which the
center deflection to plate thickness ratio was 12:2. The tests were made with aluminum specimens with the following
specifications: D = 7.5 in., t = 0.0158 in., E = 10,300 ksi, a- = 37.5 ksi at 0.002 in/in offset. The stress-strain curve
for the material was also given. Using this data, the 5, 8, 10 and 12 wo/h ratios were converted to zJ/D values and the
Pa 4/Et4 ratios were converted to PD/S values. The results are shown in Figure A-24 and Table 11 . This gives some
indication of the point at which the bending forces can be taken as having a negligible effect on the deflections. If the
bending forces were affecting the load-can'ying capacity of the plate, the points plotted should be above the curve. The
reason the points are below the curve may be in the difference in strain rates between the stress-strain curves crnd the test.
If all the values were increased so that the largest value coincided with the curve, then it can be seen that somewhere
between the wl/h values of five and eight the benling forces begin to exert a negligible effect. In fact, at a wc/h of
5.1 the bending forces carry only abcut 12 percenl of the load.

Results of failure tests on 1.55 x I rectangular membranes with clamped edges subjected to uniform lateral pressure
are shown in Figure A-25 and Tubie 12. There is substantial scatter in the data. The ultimate stresses of the materials
tested were obtained by uniaxial tests on coupons of the materials. The scatter of data may be due partly to the difference
in the rate of strain between the coupon tests and the membrane tests. It is not known if any attempt was made to run thetests at similar rates of strain.

I Greenspan considered the problem of large deflections of a plate under uniform pressure loading. He used the
Poisson Equation approximation

7T 2z + a _2 (40)

2.0 .0.0

II P 0

PD ,5D
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TABLE 9

Results of Circular Diaphragm Tests (Gleyzal, 1948)

Pa
a Ave. Radial Ave. Radial c PD c

Strain (%) Stress (csi) a(ksi)

2.09 0.035 24.0 0.024 0.174 0.012

7.83 0,190 36.5 0.054 0.430 0.027

21.37 0.875 47.0 0.113 0.908 0.057

35.28 1.580 58.5 0.156 1.208 0. 078

55.92 3.200 70.0 0.221 1.595 0.110

71.68 4.700 74.5 0.2-7 1.925 0.133

84.76 6.400 78.5 0.314 2.160 0.157

TABLE 10

Results of Circular Membran", rests (,Veil and Newmarn, 1955)

Pa!Po Ave. Radial Ave. Radial w z
(ks7) Strain (%) Stress (ks;) c PD c

2.76 0.225 11.75 0.342 0. 47 0.030

5.51 0.675 13.8 5 0.582 0.80 0.051

11.02 1.775 17.50 0.954 1.26 0.083

22.04 4.400 24.20 1.484 1.82 0.129

35.82 8. 300 32.50 2.056 2.20 0 179

51.80 16.300 43.70 3.052 2.37 0.266

TABLE 11

Results of Square Membrane Tests (Romberg, et. ol., 1942)

c Stro:n Stress p PD c"-" (%) (WstN Tp "D'

5.1 320 0.040 3.75 1.03 0.131 0.011

7.67 900 6.075 7.50 2.91 0.184 0.016

10.05 2200 0.125 12.50 7.11 0.270 0.021

12.20 3700 0.180 18.00 11.96 0.315 0.026

A-28



I

1 .5... . . .. . . 7 .5I -g /

I ////
10/StrainS

0.5 " ,,i, . , .. .a . 2.5

~( R ,"• ambero, at. ell, 1942.

I Guncl4of

00 -. 00
0 0.04 0.08 0.12 0.16 0.20zciD

I Figure A-24. Comparison with Ramberg, et al (1942), Square Membrane

II

PD

100,

Gumt

0 0.04 0.00 0.12 0.16 0.20 0.24

I Figure A-25. Comparison with Greenispan (1956); F~ailure Tet on 1.55 to 1 Membrane

3 A-29



and obtained a general solution to the TABLE 12
problem Results of Failure Tests on Rectangular Membranes (Greenspon, 1956)

0.164 Pa2

max (41) w .[h PD c(ksi) (in.) (in.) I (psi) (in.) T

This equation nriy be rewritten, in terms (.i)_0 
i)

used here, as follows: I61.0 0.113 13.5 920 2.77 1.80 0.205Zc 0.164 PD (42) 70.7 0.119 13.5 950 2.54 1.52 0,188

19Is ["+(; 1 41.8 0.134 13.5 700 2.44 1.69 0.181
Thus if 46.1 0.104 13.5 600 2.76 1.69 0.205

D L, z /D 0.082 PD 41.8 0.068 13.5 435 3.12 2.07 0.231 1
c 7" 72.3 0.125 54.0 226 9.47 1.35 0.175

1.5 D L zD 0.1135 PD 65.0 0.182 54.0 245 7.06 1.12 0.131

and

3D 1, z,/D= 0. 1476

The comparison of this Poisson Equation approximation and the more exact equation presented here, is shown in Figure A-26.

SII1.5 1

PD
r

0, 5

o I

-01,- 1 -A-------~

0 0,04 0.001 0.12 0.16 0.20 f.24

i/o

Figure A-26. Com;xmrivn with Grmnspoo (1960); Poisson Equation Curves
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Comparison of Test Results and Computer Results. All of the comparisons of the PD/S versus z/1) curves made in
this section are based on the "equivalent rigid-plastic" curves. Thus, to make a comparison or deterrrine the magnitude
of the errors the "equivalent rigid-plastic' curve (a dotted line) and the test points (a dot in a circle) should be used. Use
of the "equivalent rigid-plastic" curve is one wny to make the non-linear behavior of the material more apparent (se
Figure A-27 and Table 13).

It will be noted that, for all the shapes tested, the poinits in a Lund about orn'3-half the span ' f the membrane in
either direction across the center of the membrane show negligible error between the test results and computer results. In
fact, the only region in which errors appear is in the corners in an area with a radius of about one-fourth the span with the
center at the comer, The error in the corners, as shown in Figure A-28, is very large at low pressure levels, and about
20 percent at high pressure levels. This is to be expected because the computer program assumes a un;form stress distribution
which does not exist in the comers of u rectangular ,nembrane. However, in Figure A-29, for a point a little further away
from the corners, the error is much :ess (less than 10 percent for most of the curve).

In Figure A-30, for a point away from the corners but clong t6e edge, the errors are less than 5 percent. This
same trend 6 evident in all uf the shapes considered and also in the membrane supported by yielding beams (see Figures A-31
through A-40).

In the illustrations titled 'Comparison of Results - Z/Znax .. ," beginning with Figure A-41, the amount of error
and the location is readily apparent. From these illustrations a tew characteristic cross-sections have oeen plotted.

The results for the square membrane with one yielding beam show excellent correlation between computer and
test results. The results for the square membrane with two yielding beams show an error of abo.:t eight percent in the main
portion of the membrane. To construct these charts, first the stress-strain curves were made for the matericl: used in the
membrane and in the beams; then the tests were conducted, The yielding beams were stretched to about three percent
strain before pressure was applied. The average strain across the point of maxinurm deflection was computed. Going to the
biaxial stress-strain rurve, the stress in the material was found. Thus, the v'lues of pressure and membrane strength which
were fed into the computer program were determined from the test results. In this way, if the computer program gave
results very nearly the same as the test results the conclusion could be made that the assumptions used in the theory .vere
justified (see Figures A-41 through A-53).

It can be observed ý, m the results on the square membrane .vith clamped edges, and the square membrane with
one yielding beam, that the results of the tests correspond very closely with those of the computer study. The strains were
easily measured in both of these cases, so accurate vulLes of the membrane strength could be obtained. The errors in the
,quare membrane with t,.o yielding bearmi were due mainly to the errors in the membrane strengths which were fed into
the computer. It was d:fficult to obtain a high degree of accuracy in computing the strains in the membrane, and thus the
membrane strength. The program is very sensitive to this value of membrane strength.

The greatest errors bet.een the test results and the computer results occur in the corners. Here the membrane is
not strained as much. Because the strain is at . lo,- level, the stres, in the corner ;s also at a lower level thao in the
main portion of the membrar.e, and in fcct the stresses in the corners approach zero, Thus, bt.cuusc the streogth in the
comers of the test mermbrane has not reached the same strength as in the rest of the membrane, the uellections in the
cc.rners of the test membrane are greater that, the computer values which are bused on -, urr -ci:n stress distribut'on.

A& can be suer from the comparison of results tabies, tht -wo sets of results always oqree we!l in the main portion
of the shell; yet have errors as high as 30 percent in the corners in soae c-ses. Note also that the error in the corners
decreasts as the total def~ection 1ncreases. This is because the streýs in the main portion of the mer.brne hao been
tiicreýoing rapidly in the elastic range of the stress-strcin curve (see Tables 14 artd 15).

The membranes yield to a very nearly circulur deformation patter*. in the short span direction, even near the
clamped edges. The greatest deviation from a circular shape occuvr at a distance of about 1'8 the 'pon from the edkes.
A circular deformation pattern is evident from the strain versus center deflection curves which show that the itto2in varies
very little fm the different rectangular pluis and the circular plan. The circular mebrrne and the strip me';brane both
defiect to a circular deformotion pattern under uniform laterri lood.

The stres% and strain distribution curve (Figure A-ll.shcvs that the overoge stress is about 44.8 ksi. It the strain
versus z D c•.rve is entered with zo,, 0 0. 125, the value of strain is 4.4 percent. From the bia.-ioI struss-!train curve
(Figure L-0) a stress value of 48.5 ksi is obtained. This is the value of stress vsed to obtain the S value used for
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comparison purposes in Figure A-36. Had the true average stress value of 44.8 ksi been used the correlation would have
been even better.

"If an attempt is made to use a stress function which has a maximum value at the center of the membrane andt approaches zero in the corners, the discrepancies between computer results and test results will decrease.

I I .- -T - -

TI]- I _ AK -,

2.0

PD/

1.0 1
r/ - RiCjid-Plustic (Biaxial)

Equivalent Rigid-Plastic
(Biaxial)Equivalent Rigid-Plastic

0. 5r (Uniaxiol)

Test Results

0
0 0.04 0.08 0,12 0.16 0.20

Ze/D

Figure A-27. Comparison of Computer and Test Results - Square Membrane, zg9 9
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TABLE 13
Computer Results and T f Results - Square Membrane

(Points z9,9, z5 , 9 ' z5,b)

Computer Results Test Results
S% Strain axial

PD z9,9 .. 9 5,5 Across Stress T 'n PD PD 9,9 5,9 5,5
-• -• Center ntress D -

0.25 .0184 .0143 .0112 0.0956 25.5 0.15 0.20 .0207 .0173 .0142
0.50 .0369 .0288 .0227 0.3853 41.3 0.50 (.37 .0278 .0229 .0194

0.75 .0558 .0435 .0343 0.8769 41.4 0.75 0.56 .0414 .0330 .0264

1.00 .0750 .0586 .0463 1.5829 42.8 1.03 0..81 .0594 .0470 .0384

1.25 .0948 .0744 .0587 2.5235 44.4 1 .34 1. i4 .0828 .0660 .0532

1.50 .1155 .0909 .0718 3.7278 47.0 1.71 1.49 .1060 .0842 .0674

1.75 .J372 . 10or .0858 5.2413 49.5 2.10 1.85 .i265 .1010 .0804

2.00 .1604 .1275 •..1010 7.1248 51.5 2.49 2.23 .1480 .1190 .0936

2.25 .1856 1485 .1178 9.4662 52.8 2.88

2.50 .2135 .1722 .1370 12.4226 -

c - 41.3 ksi = Equivalent Plastic StressC

2,0- _ / (

2.5-

15 //

PD

ZO

1.0

0.5 0 - Rigid-Plustic (Biaxial)

0.---- Equivalent Rigid-Plastic

S• lest Results

0 0.004 0.()08 0.012 0.016 0.020

Figure A-28. Comparison of Computer and Test Results - Squwie t~mbrane, z2,2
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Figure A-31. Comparison of Computer and Test Results - Square Membrane, z5,5
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TABLE 14
Computer Results and Test Results (Points z9 , 9 , z5 9 ,

L9,5' and z5,5- 1.5 x I Membrane

- Computer Results . I Test Results
%-Strozn Biaxis Oan PD PD-

PD 9,9 5,9 9,5 5,5 Acros Stress PD 9,9 z5,9 z9,5 z5,5
y- 5 "-- D - - Center a-n " = -T D -"U

0.25 .0252 .0192 .0205 .0157 0.172 41.3 0.25 0.067 .0158 .0115 .0130 .0102
0.50 .0507 .0386 .0412 .0317 0.696 41.3 0.50 0.249 .0253 .0199 .0222 .0180
0.75 .0767 .0587 .0625 .0482 1.593 42.8 0.78 0.410 .0390 .0308 .0322 0252
1.00 .1033 .0798 .0845 .0653 2.902 45.0 1.09 0.619 .0592 .0450 .0489 .0378
1.25 .1322 .1022 .1077 .0836 4.686 48.8 1.48 0.911 .0878 .0684 .0724 .0560
1.50 .1627 .1269 .1327 .1034 7.054 51.4 1.87 1.240 .1163 .0907 .0967 .0758
1.75 .1960 .1545 .1600 .1255 10.161 53.0 2.24 1.568 .1400 .1090 .1158 .09 7
2.00 .2335 .1864 .1910 .1509 14.272 - - 1.845 .1596 .1250 .1335 .1050
2.25 .2774 .2252 .2275 1815 19.872

2.50 .3324 2756 .2737 .2214 27.993

" = 41.3 ksi = Equivalent Plastic Stress
C

1 1 0
2.0 D ]

I100' /0,

PD

Rlo•i- ostic ( loO)

I ql Test Re mIts

0 0.04 0.06 0.12 0.16 0.20
4/0

Figure A-33. Cospaoson of Computer and Test Resulh - 1.5 x I Membrane, z9, 9

A -36



2.0

1/./

PD
1.0-

0.5 Rigid-Plastic (Biaxial)

Equivalent Rigid-Plastic

0 Test Results

0 1
0 0.04 0.08 0.12 0.16 0.20

z/D
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Figure A-36. Comparison of Computer and Test Results - 1.5 x 1 Membrane, z9 ,5

TABLE 15
Computer Results and Test Results (Points z9,9' z5,9'

z 95 and z5,5 2 x I Membrane

Computer Results _J Test Results
NO Strain Bioxial

PD 99 5,9 z9,5 z5,5 Acrms Stress 0-n PO PD z9Y9 z5, 9  z9,5 z5,5
T W Center 6- 7c _r c _15

0.25 .0285 .0716 .0243 .0816 0.218 41.3 0.25 0.062 .0181 .0137 .0172 .0129

0.50 .0573 .0434 .0488 .0373 0.880 41.4 0.50 0.126 .0220 .0174 .0208 .0167

0.75 .0872 .0663 .0741 .0568 2.028 43.4 0.79 0.250 .0304 .0235 .0273 .0219

1.UO .1187 .0909 .1007 .0775 3.739 47.0 1.1-4 0.,2? .0604 .0462 .0515 .0397

1.25 .1525 .117 .1290 .0996 6.135 50.5 1.53 0.868 .,.,J .0757 .0853 .0662

1.50 .1899 .1483 .1602 124C 9.431 52.7 1.91 1.1,0 -1250 .0953 .1085 .0838

I1.75 .2327 .1845 .1954 .1538 13.997 - - 1.555 .1565 .1200 .1395 .1069

2.00 .2W40 .2295 .2372 .1889 20. 493

2.25 .3517 .2919 .2919 .2368 30.688

2I I K - - Li
CT - 41.3 ks: - Equivolent Plctic Sires
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Figure A-43. Cross-Sections - Square Membrane with Clamped Edges, zma/D 0.0594
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Figure A-53. Cross-Sections - Square Membrane with Yielding Beams on Two Adjacent Edges, zma/D = 0. 1522
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APPENDIX B

YIELDING MEMBRANE PROGRAM

A bstrcct

This Appendix presents a computer program for iterative solution of the large deflection membrane equation
using finite differences. An investigation of relaxation factors at various P4/S ratios and grid sizes is included. Graphs
cre given showing the relationship between strain in the membrane, P3/S ratios and center deflections.

Modifications of the basic program are given which allow variation of pressure across the entire membrane, use
of Poisson's Equatioi, inclusion of plastic beams across the membrane along the center lines, and creating free edges
with or without plastic beams.

Introductiot

The equati xi defining the shape a membrane takes when loaded with pressure- large enough to cause deformations,
in excess of those allowed by small deflection theory, defies solution by means usually employed fir equations of this
type. The equation is distinctively nonlinear, involving products and powers -of partial derivatives. The method of
solution presented here consists uf defining the partial derivatives in the equation in terms of finite differences, and
iterating the resulting equation to obtain a description of the surface. An over-reloxation procedure is used to si.eed
the iterative proc.ss, The iteration procedure involves a long and tedious process and may be accomplished only
through use of high speed digital computers. Therefore, the procedure presented here is orogrammed in basic Fortran
computer language.

Mathematical Formulation of the Problem u.

Consider a typical element of surface (Figure B-i.
1 and t? ure general curvilinear coordinates, which, Z

when combined with the position vector, r, describe A

the surface completely. n is the normal to the surface
at the point. Then the general equation for the I / -*2 =cons t
principal curvatures kn o; the surface as developed
by Wang* is: X

H2k2 - (EN - 2FM + GL)k + (LN - M2) = 0 ()
n n

Figure B-I. Typical Element of Surface

Solving this equation for k1 and k2 by the quadratic formula:

73r, - 2FI: + GL + ;N- ?FM 4 GL) - 't ( -4,( ) (2)

Where:

SI• , ' + +

F x x y y (3-b)

X\ ("I~ (3-c)

iI * 47 - 7 (3,,,)

7C.T. Wang, Aplied Elasticity, McGraw-Hill, New York, 1953.
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L 2 F (3-e)

o2

M (3-f)

ff - (3 -S)

If we choose for our generalized coordinates i = x and f2= y' equations (3) become:

E ~+ 1 3%N2(4-a)

S 0 Z 0 Z (4-b)

c -1 + ( y) (4-c)
+1 - + + (+ 4d)

L (4-e)
H
)2,,

M 1 -- (4-f)
H

N \ (4-S)

H

The five equations developed by Wang defining the equilibrium of the
element in Figure B-1 reduce to a single equation if all of the stress N1

resultants except N, and N2 ore assumed zero. For this stress
condition to exist only r.3rmal loads may be consicered as shown 43
in Figure B-2. Let R, and R2 be the principal racii of curvature,
then the equation of equilibrium of the element i,:

=0R1 Rý,

If we let N1  N2  S = a constant, this equaticon becomes: N1

+ P Figure 8-2. Element Under Stress

In terns of principal curvatures this becomes:

ki + k,, - - -2

From equation (2) we see that:

+N - ?FV + GLk1 +k-o -
H?

Substituting equations (4) in this equation:

-. 2z )21

(2 i X)(
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Substituting this expression into equation (5) we arrive at the final equations describing the surface of a membrane under

a pressure loading p3.

[( )2 2 c) 2L Z + [I+ z'12
+ 2  2X XY~L~

(6)

P3 + (4 2 __)13/2

The finite difference expressions for the partial derivatives in equatio~i (6) are:

X= 2(7)
x

_ = Zt+l ,_t "-1 7 ,.1 j(7-b)
6~y 2A y2 zij~ 1 p - 7,

.z w (7-b)9?, _ Li,+1 " jj. + i t,1-1 (7-c)

•x2 A 2
'"X

d' 7,_ •t+1,t+ J1,+l " J+l ,.11 :t- ,1- (.•

ivy-4 A XA y
<• 2 z _ i+l ._ " its + zi-1 -J (7-e)

Substituting these in equation (6) ond reducing we find:

(4A•' •2  + (42 2
y* X 'y Xy

(8)
9 " ' + ~?A:')3ý 0

x y

Vv here:

A " ('iJ+ -" i (9-a)

l (•i+lj -- i!,j ) (9-b)

C " (•i+i,j - '?j + .?i-,J) (9-c)

D " (- iN,jI I ri,j .) (9-d)

E - (ýýj j, j+l - -j.I, j,)+ "1+ ,J-j + 71_ jl, . ) (9-e)

g riLd sirC parallel to the X axis

g arid sire parallel to tle Y axis
y
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If equation (8) is satisfied by the correct value of Z.,. the Identity will hold. However, through the iterative
process the correct value of Zi - are not known and equation'(8) is not equal to zero but rather to some value f which
approaches zero as the values d Zi0, approach their correct values.

This suggests the following relaxation scheme:.

71,j (now) u zj (old) -- f (old)(

Where: ,

(t - over-relaxation factor .

"-6t Cld) "2(4• X2 + A2 + 4 ),2 + B2 )

Discussion of the Computer Program

Figure B-3 defined the various parameten -- -

used in this program to describe the physical Ai
dimnensiois of the n~riiane. Because the pressure -4
is assumed ..onstant over the surface, symmetry can
be used and only one-€uarter of the membrane I
need be computed. - ....- -4 .

A series of trials was made to ,etermine
the optimum relaxation factors that would give Y
convergence in the least numbes of iterations.
The trials were made at PD/S ratios of one Figure B-3. One-quarter of the Membrane
and two (Figures B-4 and B-5). It should be
noted that the relaxation factor is noi
critical for large grid spacing and low
PD/S values but becomes increasingly
critical as either PD/S rises or grid
spacing decreases. There is little change
in the relaxation factor with resect to
the convergence limit CONVL; however,
the number of iterations increase as the
convergence limit decreases.

Figures B-6 and 1-7 indicate that the error decreases sharply as the grid size decreases. Less than one percent
error may be achieved with at, 8 x 8 grid. These curves are for a square membrane and the "exact" values shown are
from a 32 x 32 grid size with a converge',,r limit of CONL = 0.0001. This was considered to be exact enough for the
purposes of an errowr analysis. A 16 x 16 grid size with CONV m 0.001 was used to obtain the comp.'er PD/S versus
zciD curves. It was found that minus signs aopou.-ring in the output column giving maximum change for each iteration
indicate the relaxation factor is too high. The iacal relaxation facto, was found to produce only one or two minus
signs in this column.

The progra•s hod numerous comment statements to aid in identification of th. program corysonents and the
variables involved. It also hod many additional feature vch a= initial values could be read in as data; all poinh
could begin as zero; a limit on the number of iterations; a conveMence lirtalt (usually CONVI. : 0.001 in.); a stop
on the iterations if the center deflection becava larger than one-half the span; and strain computed acrss the
point of maximum deflection and along the yielding beams.

8-4



PD I.

2.0 C___ CO 0.001_ 40

1.5

Wic U4 6x6 &8 10 10 1IjJ2 140c4 16166

Grid Sixe
Figure B-4. Relaxotion Foctor versus Grid S~ze, PD/S 1 .0

- - 1 - - 50

PD .2

2.0~ - _ ________ _40

tONVL .001

11.0

W. U.4 6a6 W. 10.10O 12.1? 14014 16064
Grid Size

Figvre B-5. Roloxat~o. Foctor venus Grid Six*, PD,'S 2.0
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Caha e. The program wi 1.
handle o finitei-dfference grid 64 by 64
on one-quarter of the mermbrcne. The
capacity of the program may be .075 ze
altered by replacing the parnrmeters ___ __"1__ 4
of the DIMENSION statement, PI)
appearing at the beginning of the . .0
pro3ram, with new parameters; and -€

replacing the limiting vwiues of the C5"
two DO statements, immediately 2
following the DIMENSION statement, )
with the new parameters. The

parameters to be entered must be
the desired maxinrrm size of grid .070 82o
plus two. This requirement arises 8X8Grid Size 12xI2 16xl1
because the program includes the
boundary points and one line of Figure B-6. Percent Error versus Grid Size, PD/S 1.0
painh, post each centerline. Thus,
the altered statements would read
as follows:

DV1MSION Z(Xx,XXc)I .1120

C ZERO Z(I, J) BAND

I D021 = lXXX .160-__- .... _

DO2J - 1,XXX

Z(I, J)-o. P- 8-i I I
where the new array size would appear I
in place of the X's. ---- .

.150 0__-

4x4 8x8 12x12 16A|6

Grid Size

Figure B-7. Percent Error versus Grid Size, PDiS = 2.0

Detailed Procedure. Before each set of data cards is read, the storage spaces for Z(l,J) are set to 7ero.

Input: Necessary data is read into the computer on two data cards.
Card 1: IDE T. ...... .. Data identification. May be any three

dihit number. It will be printed out
with the results as:

IDENTIFICATION...XXX

ICODZ . ...... This parameter tells the computer whether
or not initial values of Z(I, J) are to be
read in from data cards. Punch column 10,
1 if initial Z(I, J) are given, 2 if not
given.
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IX ....... The nujber of finite divisions on one-
quarLe" of the .embrane parallel to DDIA.
Max. a 64

1Y ......... ... The number of finite divisions on one-
quarter of the membrane parallel to DIPS.
Max. - 64

ITERL .... ..... The rmaxium number of iterations allowed.

'C(VL .... ..... The maximum change between iterations to be
allowed at any point. The membrane will
converge approximately to an accuracy one
place less than the convergence limLit set.
Thus, if CCMVL - .001 the results will be

... accurate to .01.

PI . . ... . Over-relaxation factor

Card 2: DIM ........ .. Dimension of one-quarter of the platej parailel to the X axis.

DIMJ .... ...... Dimension of one-quartcr oi the plate
parallel to the Y axis.

STRE3....... The maebrane stress. The stress usually
used here is the plastic strength of the
materi&l to be used per unit length.

Thus, if steel with a yield point of
36,000 psi znd a thickness of .125 inches
is to be used, we would compute:

STRES - 36,000 x .125 - 4500 lbs/in.

PRES3 .......... Pressure acting normal to the membrane
surface.

It is possible to read initial values of deflections into the computer through use of ICODZ. if !CODZ is
punched 1 in column 10 of card 1, the computer will read in initial values for deflectiors. If ICODZ is punched 2 in
the some column, the ccmputer will bypass reading of initial deflection values and 7nitiai deflections will be assumed
zero. If initial deflections are to be read in, the follow'ng procedure must be followed. The rrachine will read the
first word of the first card as Z 1 1, the second as Z12 , etc., until the first row has been read in. The machine finds
the number of pieces of data to place in the first row by interpreting the parameters given it on Cards 1 and 2. If more
thon one card is required to fill the first row, the machine will read a second card and continue placing numbers in the
first row until the first row has been completed. The first number of the second row will then be read, i.e., Z2 1, as
the number immediately following the last number of the first row. A new card must not be started for each new
row unless ti'e first value for that row begins a new card as a natural part of the sequence. The data must be placed
on the cards in the 10 column fields, with decimal points included, continuously beginning with the first deflection
of the first row and ending with the center point of the membrane. All boundari points must be included but only
one-quarter of the membrane may be read in. The following example demonstrates this p-cKedure. Suppose we have
the plate, given in Figure B-8, with initial deflections as shown at the grid points. Then suppose we wish to determine
the deflected shape of the plate under pressure of 20 psi. The p!astic strength of the plate is 100 lbs./in. The
information wou!d be entered on the data cards as follows:

Card 1:

ITEM CARD COL. EXMLE

IDENT 8-10 xx ýo= x125
ICODZ 20 XX x)0= ax 1l
IX 29-30 xx xxox Y.04
IY 39-40 =xxx ~ox ,o4
IT•RL 41-50 xx Xxxx xx50
CamL 51-60 Xx Xocim .001
PHI 61-70 xx xxxx 1.50

I

J J i j J 1 J " JJJ 1 l [ • j -- j --- 7JJ l • l



Card 2:
DDZA 1-10 XX "O XX5.
DDI 1i-20 xx xx xX5.
STRES 21-30 xx ]a= 100.
1r"S3 31-40 xx xxx 20.

IV .)CM~. rc'nr WMP~LE

3 1-10 ZlI 00 0000 0000

3 11-20 Z0,2 O0 0000 0000

3 21-30 Z013 00 0000 0000

3 31-40 Zl14 00 0000 0000

3 41-50 Z0,5 00 0000 0000

3 51-60 Z2,1 00 0000 0000

3 61-70 Z2.2 00 0000 00.2

3 71-80 Z2 . 3  00 0000 00.3

4 1-10 Z2,4 00 0000 00.3

4 11-20 L2 , 5  00 0000 00.4

4 21-30 Z3, 1  00 0000 0000

ctc.

Where x's are shown the card columns nay be left DIYA = 5"
blank. Decimals may not be included where not shown.
Where decimals are shown the data may be placed anywhere = 1.25"
within the ien column field desigrated, provided the decimal
is supplied. If the decimal is not supplied, it will be n 0 0_
automatically placed after the lost column in the field
regardless of where the data is placed. Preceding zeros

need not be punched. 21

After reading in all data cards, the machine computes -0 3 -.5 .6 .

necessary parameters and sets up checks for use later in the
program. The frst value computed is Z2, 2 . Equations (9) .3 *.6 2.? -7

are evaluated, using the initial values given, then
substituted into equation (8). The value of f, thus found, 1- 4 .6 .. 7 - .-
;s substituted into equation (10) and a new value of Z2 2
is found. This value is checked against the old vo!ue
of Z2 2 to see if convergence has been obtained. The Figure B-8. Example
old value is then replaced by the new value and the program
moves to point 2,3 where the process is repeated.

At each point, the new vr-lue is subtracted from the old value and the difference is compared with the largest
difference yet four.d. If the new difference is larger, :t replaces the o!d largest difference. At the completion of an
interation the largest difference anywhere in the plate, together with its coordinates, is printed out. If this difference
is smaller than the convergence limit set, the program goes to print; if not, the prograrm returns to 2,2 and the process
is repeated.

At the center-lines the program makes use of symmetry to obtain values of points outside the quo;ter-plate
being computed. At the completion of each iteration the number of iterations completed is checked against the
iteration limit given in the input data. If the limit is reached, before convergence is reached: the program prints
out all the data obtained to that point and goes on to read tiIe next data cards. Each point is computed consecutive!y,
row by row, beginning with paint 2,2 and ending with the center point of the plate.

B-8



lR D / S = o - . . . .

CONVERGENCE LIMIT =..001
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Figure B-9
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After the equations have converged or the limit set on iterations has been reached, the program computes the
average strain along the centerline parallel to DIMB and along the centerline parallel to DIMA. To find this strain the
computer sums the chord distances between grid points along the :enterline and subtracts the plan projection of the
centerline tromn it. This gives the elongation. To find the average percent strain: the elongation is divided by the plan
projection of the conterlane and mulIipliod by 100.

It was found thor the equations diverge after the average slope (computed as the cenier deflection divided by the
shortest side) exceeds 1:1 . The computer computes the slope along both centerlines. The program will automatically
stop iterating, when this slope is reached, 2nd print out all available data plus the following statement.

AVERAGE SLOPE EXCEEDS 1: 1, EQUATIONS DIVERSE BEYOND THIS POINT

O tput. A flow diegram and a print of the computer program follows. The program is supplemented with comment
statements to cilitate coordination with the flow diagram. The first four cards of the program (the fourth card is blank)

Flow Diagram, Funicular Shell

Start

Compute Finite D~f-
ference Grid Spacing,

Dirnension Z.,

Iterationts= 1

Coer Zi A xrrayStrg

Cnergonc Limt Convergence Check=O
Relaxation Factor Convergence Switch=1

Return Switch=]

Read:
a, b, , PGOTO

D
Compute Array Size

2
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Flow D .iagram, Funicular Shell

D Compute New Z..

Compute Change Be-
tween new Zand

aid Zii



Flow Diagram, Funicular Shell

B

~I"

Return Switch=2
zi+,=Z i-1,j

F

I l-j Zi+ 1j=zi.

"z... =z..

6-12



Flow Diagram, Funicular Shell

Gd
Have AlI N Reuired ? N

PonsCovred train Complete? .'

Compute Ave. Strain
at X =a and Y = b

f Print: Prnt
StIterations Completed Iterations Completed

Z at Center Point of Shell Z at Center Point of Shell

Point of Max* Change Point of Max. Change
M Max. Change Max. Change

Data Identification oes Max.
Relaxation Factor YE Average Slope
Ave. Strain at X = a Exceed 1:1?
Ave. Strain at Y = b
P31 S, P3/S

I •x' •y, a, b

r •rnt: 1JAddI tolterations0

I Z. for Entire Shell

i -OT3
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*** HANSEN 2R
PROGRAM IS ITERATIVE

* COMPILE FORTRANEXECUTE FORTRAN

C FUNICULAR SHELL, PRESSURE CONSTANT
C RESTRAINING BANDS ACROSS X=O AND X=2*DIMA

DIMENSION Z(66*66)
C ZERO Z(IJ) DAND

I D021=1#66
DO2J=1,66

2 Z(IWJ)=O°
C MAX IX = MAX IY = 64
C ICODZ,..,PUNCH COL 10, 1 IF Z(I,J) GIVEN9 2 IF NOT GIVEN
C IX..o.o..NUM8ER OF DIVISIONS ALONG D!MA
C IY..o.,*.NIJMBER OF DIVISIONS ALONG DIMB
C ITERL°..,MAXIMUM ITERATIONS ALLOWED
C CONVL..o.CONVERGENCE LIMIT.e.MAX CHANGE BETWEEN ITERATION-'
C DIMA..,..HORIZONTAL DIMENSION OF 1/4 SHELL
C DIMB.....VERTICAL DIMENSION OF 1/4 SHELL
C STRES..,,STRESS PER LINEAR DISTANCE
C PRES3....PRESSURE PER UNIT AREA
C PHI°J,°,.RELAXATION FACTOR.oUSE 1*7 FOR AN 8 BY 8 GRID
C STRNB..,.YIELD FORCE OF BEAM, POUNDS
C ITER.,,.*ITERATIONS COMPLETED
C Z(I,,I%°.,RIZE AT POINT IJ
C TCON2.,.,MAX CHANGE BETWEEN THIS ITER AND LAST
C IPJP...*POINT OF MAX CHANGE
C PS.....,.PRESSURE OVER STRESS RATIO
C STNBX°°,AVLRAGE STRAIN OF RESTRAINING BAND (BEAM) AT X=O
C STNSX....AVERAGE STRAIN OF MIDDLE LINE AT X=DIMA
C COMPUTED AS 100 TIMES (ARC LENGTH - DIMS)/DIMB
C XLAM°...,MESH SIZE ALONG DIMA
C YLAM,,.o°MESH SIZE ALONG DIMB
C INPUT

READ 50CIDENTICODZIX,IY,ITEP1,CONVLPHI
500 FORMAT(5110,2FIUoO)

READ 501,DIMADIMBSTRESPRES3STRNBWIDTH
501 FORMAT(6FIOC)

PRINT 599
599 FORMAT(54HIFUNICULAR SHELL,RESTRAINING BANDS ACROSS X=o, X=2DIMA/

118H IDENTIFICATION...13)
600 FCRMAT(75H ITER CENTER DEFLECTION MAX CHANGE IN SHELL

I MAX CHANGE IN uEAM/)
c COMP'JTE ARRAY SIZE

M=IX+1
N=IY+I

C CHECK TO SEE IF INITIAL Z(I,J) AR[. GIVEN
IF(ICODZ-1)999,3,4

3 READ 50C ,((Z(I,9 ),J1=IY),I=I*N)
502 FORMAT (FFl su')

4 XI=IX

XLAM=DiMA/XI
YLAM=DIMB/YI
ITER=)

10 1-2

T CON 2
T(- ON4=
IC•,WH: 1

I CWCH= I
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GO TO 130
10] J=J+l

IF(.-4-J)119 129IUC;
12 Z(lJ-11)=Z(19J-1)

GO TCn 1~00
11 I::l+l

J=2
1Ff N-I 1999. 15.1'J

15 ISwC11=2

GO TO 100
102 J=J+l

IF(M-J 50.20 .21

GO TO 100
21 Z (1+1 JIo)Z Cl-IJ)

GO rc 100
C COhIPUTATUON PHAjL
C CCMAPLITE NFW.. ZCI*J2

1I'C A=Z( I ,J+1 -Z I .J-1)

D=ZC I !J.1)-2.*Z CI J)+Zt I ,j-1

E=ZC 1+1Jj4 1)-ZliI IiJ+1 1-2(141 *J-1 +7 c-l- j-i I
FI(4.*XLAMW-'*2+4f-*IXC-.5WA#PEL+(4.3YLAM4.*2+[3**2I#D
G=?RE,'3/(5ST;--Ej2.*XLA..cYLA\.) C4.cXLA'Yl*2?YLAM**2+XLAM~**2*B**2

C SET UP CO~CNVLRGENC: CH~ECK
TCf)Nl=T-ZCT 'jI
i r(IA'V~r(TC TN1-CONVL 1111.11 llý

1Lý7 ICSWH=2
111 1FCALSF(COC0II-A.ýSFCTCON42))I."6,O6,108
ICE TC0742TC("'I

I P:
JpJ

106 ZCIJ)=T
C FIND) RETURN STATEMENT
'409 GO TO 11CI1, 2,,I$WCH

C COMPUTE BEAN
15i 1=2

J=1
155 AB=ZC I .j~-1-ZI I J)

CB=Z 1+1 ,J)-2.*L Cl J)+Z fl-I ,J)

FI>2.*STRES*4J/,).JRTF(XLAM**2+AB**2)
GS=8.*.ST RN6;13 AM' iC3/ Db
G!,l6PR ES 3 *W T H
Hlb= 16. ISTRfl*YLAtvL/0b
Tt3=Z (1 Jj +(CFt+GB+GB83 /H6*PH l
ET UP CONVERGENCE HC

TCC'N3=TB-Z( I JI
lVCAHSF(TCON43I-CONVL)15191519152

152 ICS.*1=?
151 IF(ABSF(TC0N3'-AIbSFCTC0N4) 1153,153915'.
154 TCON4=TC0N3
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JPB=J
153 Z( I J)zTB

1=1+1

156 Z(1+1.Jl=Z( I-1,J)
GO TO 155

C CHECK CONVERGENCE
200 GO TO (203920291,CSWH
C CHECK ITERATIONS

202 IF(ITERL-ITER)2O3,204%204
C DATA TO BE PRINTED OUT EACH ITERATION

204 PRINT6lOITERZ(NM) ,IPJPTCON2,I.PBJPBTCON4
610 FORf4AT(I5%FI8*59 loll Z( 121 lHs 12 2H)= F9o5q

I 10H Z( 12. lHt 12s 2H)= F9*51
C CHECK AVERAGE SLOPE

IF(I.-Z(NvM)/OIMB)2992993O
29 PRINT611

611 FORMAT(64H AVERAGE SLOPE EXCEEDS 1 TO 1, EQUATIONS DIVERGE PAST TH
11S POINT)
GO TO 203

C ITERATE AGAIN
3C ITER=ITER~l

GO TO 10
C COMPUTE STRAIN IN t8EAM AT X=0

2C3 I11
J=I
ARC=O.

41 ARC1=SORTF(Y,..A;-*2+(Z(I+1,1)-Z(IJfl**2)
ARC=ARC+ARC I
I= 1'+ 1
IF (P- I 1a99t? 42 941

42 -rTNnX7 (ARC -DIMIr.) /D I '--*100*
C COMPUTE S~TRAIN IN 5HELL AT X=A

1=1
J = M.
ARC=n.

?1 ARC1=SODTF(YL-A,*;**2+(Z(I+1tJ)-Z(ItJH#**2)
ARC=ARC+APCI

312 S I PlX = (APC-JI1. '0/,, I*Ir- O.ý0

D. I '!T 51)' 1 IC IN'

6C9? FOC".ýAT(17H RE~LAX. FA,.CTL>*..Fl3.5)

612 fC;*Tj! ..TPAIN Al-ONO J=I?,4H 1!> F5.2)

6: FC!R',kT(1'7H .:.........rlc.!),2VH ST'ýAIN IN BEAM ... F10.51

PRIN!T 6-.ýP',;.IbTH-
603 FýýNMAT(17H P/ .... .- f52i' :L" vj;CT~i........ F10.5)

P'ZINT e,4XAjN
6 N FrF -1A TI!' L A I,".- X.. r1-1 2 A......~.......... .F10.5)

PP Y'.T I:

6015 Fro'AT(17'1 LA..iZA Y-..*.70 52' E...o........F05

PRIN~T 6C7
6C7 F0WlAT(26!4,`C' LolIý1ANCEý FOR 1/4 SHELL/)
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are instructions for the computer necessary for correct handling of the program and for time charges. These cards will,
of course, vary with the individual system. A print of the sample data follows the program. This data was run on the
computer for both :ases wherein init.al vrlues were given and not given. It is interesting to note that the same number
of iterations was required for c nvergence in both cases. Closer investigation of the €, tput for each iteration revealed
that initial rise of the membrane is very rapid. Indeed, by the end of the sixth iteration, the center deflection for both
cases was almost identical. This property makes the method even more desirable because initial values are not necessary
in order to reach convergence within a reasonable computation time.

The first page of output gives storage locations of the parameters used in the program. This information expedites
modifications in the program because all statement numbers and all variable names are given. Tho second page of output
gives the center deflections at each iteration and the point of maximum change and the value of the maximum change
for that iterati-,n. The third page of output gives all of the final data.

Relaxation Factors

A series of trials was made to determine relaxation factors that would give convergence in the least number of
iterations. These trials were all made on a 10 x 10 inch plate with a yield strength of 100 lbs./in. The trials were
made with pressure of 10 and 20 psi. Figure P-9 gives a comparison of the two pressures. It should be noted that the
reluxation factor is not critical for low grid sizes and low pressures but becomes increasingly critical as either the
P3 D/S ratio rises or the grid size increases. For a 16 x 16 grid at a P3/S ratio of 2.0 the graph is extremely shape and
slight erroi in the relaxation factor will mean a sharp increase in iterations required for convergence. Although error
in the relaxation factor becomes important as the P D/S ratio increases, there is little change in the factor itsrlf. A
comparison of Figures B-10 and B-I1 reveal that boh give almost identical relaxation factors for a particular grid size;
however, as expected, a larger number of iterations is required for .he higher P3 D,/S ratio. These two ficur.ks also
indicate that there is little change of relaxation factor with respect to the convergence limit 0 ; however, the number
of iterations increase as the convergence limit decreases. Figures B-12 and B-13 indicate that the error decreases very
sharply as the grid size decreases. Indeed, less than 1% error may be achieved with an 8 x 8 grid. In developirng these
curves, it was found that minus signs appearing in the output column, giving maximum change for each iteration,
indicate the relaxation factor is too high. The ideal relaxation factor was found to produce only 1 or 2 minus signs
in this column. This feature became a guide in arriving at the best relaxation factor. An example of :oo large a
relaxation factor may be found in the paragraph on modifications, to follow. Modifications to the physical conditions
ef the basic program may alter the "best" relaxation factor slightly; however, the curves in Figures B-10 and B-Il have
been shown in use to be excellent guides.

Strain

A series of trials determined the strain relationships ar various pressures and iength-to-width ratios. The trails
were all made with a base width of 10 inches. The length was varied irom 10 to 30 inches, with an additional series
of infinite length. The strain was calculated as the average strain of the centerline parallel to the narrowest side. The
length of centerline, used in this calculation, was the sum of the chord distances between grid points. Figure 3-14
gives the results of this series. It should be noted that the curves relating per cent strai' and d./D ratios for the cese
of the square membrane, and the case of th j semi-infinite membrane, are ver> close. This indicates that the strain along
the centerline of the nembrane is very close to that of the semi-infinite case of the sarr* width and dc/D ratio; and
therefore, for all practicable cases, independent of the length-to-width ratio. This, of course, would not be true for
other lines across the mer1rane. The curves relating P3 D,/S and dc/D ratios indicate that tie center deflection beconws
almost independent of the length-to-width ratio above a length-to-width ratio of approximately 3. I.

Modifications to the Prograo

The program for the membrane has, as its boundary conditions, fixed edges lying in the -me piane. Vcr;ation•s
may be obtained by altering thesv boundary conditions. The boundary may be given an oebitrory form by reading in
initial values other than zero. However, the boundciy must rerain symmetrical nbout boih a•os because only Lie-
quarter of the plate is considered in the program. Further alteration may be hod by allowing the bourndries to be
supported by plastic beams which take their thape by responding to the force of the pressure and the pull of the suppoted
"membrane. These beams may also be placed ocrots the in•terior of the plate. EUges of the -membrne may be freed by
reducing the plastic strergth of ths.% beafrs to zero. The pressure roed rot be a canst•ot over the surface of ,e meombrone.
The pressure may be made a variable by introducing, into the program, a routine that compxtes the pressure at each
point, or by reading in a given set or pressures defined at every point in the grid. If it is necessr'y to consider tOe
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I entire plate, rather than just the quarter plate heretofore considered, the parameters M and N following statement 600
should be changed to read: M =2*IX + 1

N = 2*lY + 1

This changes the indexing so that the iteration process covers the entire plate. By using combinations of these conditions,
a wide variety of boundary and loading conditions ore possible. The equations have been isolated from the iteration
process. They are listed from statement 155 to the beginning of the convergence check. Poisson's equation, or on; othe;
suitable equation, may be inserted provided the same parameters are used to identify information either given to or
required by other parts of the program. Several of these variations will be discussed in the following paragraphs.
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Two Partllel Ecke Free. Under a constant pressure loading the mem~rane with two poaol~ei edges h"e, t, kes
con a cyli~ndrca fhibp +at is independent of the coordinate perpendicular to the. free edges. For this coM.dtion the
go~verning equation is:

'2

In terms of finite differencem~

8,~ 1- 2S,+ ti-O +

[A2 + f 1 s

The parameters of this program are the some as those presiously discussed, where applicable. They ame individually
identified In the comment statements at the beginning of the program. Input requirements ore those dictated by
READ 500 immediately following the comment statements. Output is similar for oll of the prosirarru.

2. ty 50

NT 
y

0~ 49C,

A-5-,
St - - ~'-'--------l<

V)7

0 0.05 0.10 0.15 0.20 0.?5 0.4P 0.35 0.40
dc/D

Figure B-14
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HANSEN I

C V-UNICULAR SHELL9 PRESSURE CONSIA*IT

0j DIIENS ION Z(66)

D02 1=166
2Z(11=1 

*
C MAX =6
c IYas.....NUMBER OF DIVISIONS ALONG DIMB.
C ITEPL....MAXIMUM ITERATIONS'ALLCJWED
c CONVL....CONVERGENCE LIMIT...MAX CHANGE BETWEEN ITERATIONS

C DIMS ..... VERTICAL DIMENSION OF 1!2 SHELL
C STRESý.... STRESS PER LINEAR DISTANCE

C PRES3 .... PRESSURE PER UNIT AREA
C ""/MEGA .... REL.AxATIOIN FACTOR
C ITER.....ITERiATIOfN5 COMPLETED
C Z(fl.....RISE Ar PO!NT 'AI TCON2 .... MAX CHANGE BETWEEN THIS ITER AND LAST
C IP,*.*,..PO!NT OF MAX CHANGE
C PS*6***ý*PPFISSURE OVER STRESS RATIO
C 5TRN.,..~.AVERAGE STRAIN
C VL.A~4*.,..ME5H SIZE ALONG D1MB
c INPUT

RE'Ar 50,ilDENTiYITERL,CGNVLDIMBSTRESPRES3,Cl5ýGA
500 FURMAT(3 I O5ý1Qs0)

PRiTMT 60O,1DENT
600 FORNMAT 26HIýUNICULAR St-sELL, CYLINDER/18H IDENTI'FICATION ... l/3

PRINT 612- -- -- - - - -

612 FORMAT(5&H ITER CE.NTER DEFLECTION MAX CHANGE IN SHELL/)
C COMPUTE ARRAY SIZE

N= IY+1
YI-1Y

t YLA=D IkiF/Y I
I TEP=1

4 TCO.N2=3.
I CSwH= I
1=2

E3:Z( 1+1 )-Z( I-il
C= (4.*Yl-AM**2+13**2 )**I .5
D=A'8.*YLAM/C+PRES3 /STRES
E =16. *Y LAM/ C

T=Z( I )4D/E*0tMEGA
PS=PRES3 /STRE5

c SET UP CONVERGENCE CHECK
TCO0Nl7T-Z( I

11 1 CSWVIH2
IC 1IF(ABE3S( CON1)-ALISF (TCCN2) 112912,ý13
13 1CON2=TCON1

IP= I
12 Z(,)=T 101.

1=1+11

GO TO I
C CHECK CONlVEkOEHL4-

122', GO 10) (101i122) 91CS5ýH

C CHECK ITERATIUNS

g ~B-2 1



1ý12 IF( ITLPL-ITLR)hI~liC39lC3
DATA TC 3L PRI?'JLO OUT EACH ITL4ATION

103 I=N
PRINT 610sITERZ(I)9IP*TCON'2

61t" F0.RM.ATi159Fl8*5i,13H zl 2,2H)=F9.5)
C CHE'CK~ AVERAGE SLJPE

IF(*9-Z(I)/DIMB)104s1G4tl05
104 PIZINT 6111
611 FORMAT(66H AVERAGE SLOPE EXCEEDS 0.9 TO it, EQUATIONS DIVERGE PAST

1THIS POINTI
GO TO 101

C ITEPATE AGAIN
105 ITER=ITER+l

GO TO 4
C COMPUTE ST--AIIN IN SHE~LL

01C 1=1I
ARC=O.

106 APCI=SORTF(YLA?A***2+(ZiI+1)-KK(1)) 4 1;2)
APC=Aor+ARCI

S1'-7 S T RNAR\ C -DI;V./ 1;4r3o1C C
PRI%~T 6,C: I TE~qZ( I), IPTCON2
PP I INT 6-30 9 .%
Pq~IPNT 6L09,r-'iFEGA

6,09 F(ORV.AT(17H RELAX. FACTOR ... F10.5)
PRINT 6:1,Pf~Eý)3

6 C1ý FORNAT (17HPRSJR... lC5
POINT7 5)2q,STQP:z

672 FC.A('H)HELL TrGH.F:)

6_16 F.C)R5AT(17ýT R~ AIL...1 7 TgI N 1 iN IEEL L _F10.5)

6C1-7 F -0YA T 05 7A TIC ES F OR 1/2 H -LL/_

PR!NT EtI ZI)iiN
6'?B FnQW~TVlýH ZUI2,2iH)=F6.c-9rt 7 121-0 =7 .5 v5H Z(1Z,27H)=F8.5o

1 1H j(?i) =F 8 *5 9ý' 7 12 92H)=p%,- l)
c -'ý AD ,rXT DATA

T
r) ('-j
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The general shape of the membrane derived from
this eqt-ution is given in Figure 8-15.

M same samrpIe problem used previotisly was (
reu-sed here. For this shall, the deflections became too
large and the eqtc.tions *egan to diverge. Experience f
h6s shown that di\vergence begins for this shell at an
average slope of about 0.9:1. -

Plastic Beem Across Center of Membrane. The
differen-Raoi euation goveming the plastic bew is: .,

P1 2 SP 2]J 2 -q/2-.. -4

Y + x I Figure C-15. Two Parallel Edges Free

The seconI term is a load term giving tie cuntribution of the pull of the membrane to the shape of the plastic beam.
The 2 in the numerator crises because the membrane is considered symmetrical about the beam. If the plastic beam is
placed at ihe edgcg of the membrane, without on adjoining membrane to create symmetry, the number 2 should be dropped.

SIn terzns of finite differences:

8P?(z 4  ~"'J~ j-1~j + +~3I2 [A 2 + - )2]1/2SWhere-:

1ý ?I plastic strength of th ben r, lbs.

W width of the beam, inches. Point of Maximum
Rise of Beam Point of Maximum

The input requiremenis are given by / Rise of Membrane
READ 500 and READ 501. These are identical
to the previous requirerments except the second
data card must now include the strength of the
beam and the width of the beam. Initial values -

of the surfoce may be read in, as before.
g Because the point of maximum rihe is no longer

at the center of the plate, the program saves the
point of maximum rise by comparing each point,
as it is iterated, and saves the coordinates of the - I
point with the largest Z value. Strains are then
computed 79hrough khis point and average slopes
are cons;dered between th4 point and the edges
parallel to both coordinate axis. The point of
maximum rise is identified in the output.
Average strain in the plastic becm is also given.
The large number of minus signs in the maximum
change columns indicate the relaxation factor
was too high and the program was "overshooting."
The shape of membrane derived from this
program is shown in Figure B-16.

Figure B-!6. Plastic Beam Across Center of Membrane

I
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HANSEN 2R

** PROGRAM 15 ITERATIVE

* COMPILE FORTRA~tEXECUTE FORTRAN

C FUNICULAR SHELL9 PRESSURE CONSTANT
DI.MFNSIoN-z t6966)

C ZERO Z(IJ) ~AND
1 D0O2I1=166

DO2J=1 ,66
2 Z(19J)=D.

C MAX IX = t44X IY =64
c ICODZ...o.P1JNCH COL 109 1 I-F Z(I 9J) GIVENi, -2" IP NO-T-GfVVtf--
C IXo......NUV-bER OF i)IVISIONF ALONG DIMA
C IYeseseetNUMBER OF UIVISIONS ALONG DJM13
C ITERLo*..MAXIMUM ITERATIONS ALLOWED
C CONVLeoooCOflVl.R(UENCL LIMIT...MAX CHANGE BETWEEN ITtRA-T-I1fl"
C DIMA...,.HORIZONTAL DIMENSION OF 1/4 SHELL

C DIMB.....VERTICAL DIMENSION OF 1/4 SHELL
C STRES....STRES)S PER LINEAR DISTANCE
c PPES3ootePRESSURE PER UNIT APEA
C PHI*..Q...RFLAXATION FACTOR...USE 1.7 FOR AN 8 BY 8 GRID
C ITER.....ITERATIONS COMPLETED
C Z(I*J)...RIZE AT POINT IpJ
C TC`ON2o.,oMAX CHANGE BETWEEN THIS ITEP AND I.AST-
C IPjP9,4.POINT OF MAX CHANGE
c PS .... ,.PRESSURE OVER STRESS RATIO
C STNSX....AVE. PERCti\T STR.AIN OF SHELL THROUGH POINT OF MAX RISE
C AT X=Jq COMPUTED AS 10C TIT',EF5 ýARC LENG6TH - DrMB)/Dlr.16
C STNSY,*..AVL. PERCtýNT STRAIN OF SHELL THROUGH POINT OF MAX RISE
C AT Y=I, COMPUTED AS 10C TIMES (ARC LENGTH -'DIMAI/DI'KA-
C XLAMl..,..MESH SIZE ALONIG DIM-A
C YLAM.....ME5H 5IZE ALONG DIk*B
C I NPI"' T

R EAD 50 0 I1DEN T *ICODZ 9 IX, 1Y, 1T ERL,9CONVL,9PH I
500 FORMAT(5 I11v_,2Flo.0)

R EAD 5(01 ,D I 4A 9D 11%63STRE S vPP S3
501 FORM1AT(41F].090

PRINT 599,iLJENT
599 FORNIAT(16H1FUNICULAIH *ýELL/1311 l'LNTIFICATION..oI 3/)

PRINT 600
6CC FORMAT(49H I ER CLNTER DLýýLLCTION %,AX CHAýý_L IN SHELL/)

C COMPU.TE ARRAY !.IZE
tl= IX+ 1
N= IY+l

c CHECK TO SEL IF INITIAL Z(iJ) ARF GIVEN

3 READ 50'2,1 (Z(1I J) ,J1 .M') I1 ;N)
5C2 FORMAT (8Fl&..C,)

4 XI=IX
YI=IY
XLA.%IDiA/X I
YLAN1=D I "'L/Y I
I TEP=Ji

10 1=2

TCON2=('
I C .!H = I
I SWCH~ 1

GO TO 19~0
101inj:-J+
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12 Z (1,3+1)=Z (I .3-1
GO TO 100

J=2
IF (N-I (999s15,1 U0

15 ISWCH=2

GO TO 100
102 J=J+l

IF(M-J)20092C,21
20 Z(Itj+l)=Z(I,j-1)

Z(1+1,J):Z( 1-1,3)
GO TO 100

21 Z( 1+1 .31:71I-I,j)
GO TO 100

C COMPUTATIJON PHA3E
C COMPUTE NEW ' (I9J)

10C A=Z!I,j+l)-7 1,3-1)
B=Z(I+1,J)-ZtI-1,J)

D:Z( 19+19J)-.*Z (I J)+Z( 1.-1t)

E=Z( 1+1 .Jft)-Z( I-i.j+1)-Z( 1+1 3-1)+Z (I-li .- 1
F=(4.*XLAM.**2?+A**2)*C-o5*A*Q*E+(4.*YLAM.K*2+I3**2)*D
G=PRE53/ (5TRE3*2.4XLA.Mv*YLA4) *( 4.*;XLAý'**2*YLAM**2+XLAMl**2*03**2

14YLAV**2*A**2 ) ,*j *5
H=2.*(4.*XLAYv**2+A**2+4.*YLAv'Aý*, 3-2)

PS=P RE 53/ST RE S
C SET UP CONVERGENCE CHLCK

TrCoN1=T-Z (I .)
lF(ABSF(TCON1)-CONVL)111,111,2.27

107 ICSWH=2
ill IF(ABSF(TCONý1)-AOZ)F(TCON2) )1D6,10^6,1'd
1C8 TCON2=TCON1

I P = I

106 Z(IJ)=T
C FIND RETURN STATE. ýEbjT

1,)9 GO TO 11i.,1I.C
CHECK CONVE[kGLNCE

2 C u-Go TO (2C,3z,2~)q1Czd;H
C CHECK ITFRATIONS

202 IF(ITFPL-ITLR)2--3,2u4,204
C DATA TO BE PRINTED 021T EAC11 ITLRAT1,'\

204 PRINT610t I TER 9Z (No', (9 Ippjpg C~
610 FOR,1,'AT( I5.FI8.5,iCH Z(12,1H,I29,211)=F9.5)

CHECK tVERAGE ý-LUPE AT POINTJ OF tMAX RISE

35 IF( 1.-Z(NM)/L)ViA129,29,3-0
29 PRINT 611

611 FORMAT (6411 AVLFiu.E LuPE EXCi.EL-5 I T" Is E&T C LSUIVLRG;L PAST TH
I IS POINT )

GO TO 2U3
( ITERATE AGAIN
30 !TER=ITFR+1

GO TO1'
C COMPUTE 'STPAIN, AT X=A

203 1 =
3 *M
ARC=0.
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ARC=ARC+ARC 1j

IF(N-! )999932931
32 STNSX=(ARC-DIMB)/DIMB*10O.

C COMPUTE SlRAIN Al Y~I3
I=N
~J=1
ARC=O.

33ARCi =SQRTF CXLAM**2+CL(I ,9J+1 -Z CI J) )**2)
ARC=ARC+ARC 1
J=-J+1
IF (M-J )999934933

34 STN5Y=(ARC-UIMAC/D1)IA,*100.
PR INT61O, ITER ,Z CN M) IP ,JP ,TCON2

PRINT 6099PHII

609 FORMATCJ7H RELAX. FACTORo..F~o.5)
PR INT 6] 29N ,TNSYtNi,ýTNSX

612 FORNIATC16H oTRAIN ALONG II12,4H ISý F5s2918H STRAIN ALONG J=129
14H IS F5s21
PRINT 6C1,PkES3

601 FORMAT(17H PRE6 JlRE....... .r10o5)
PRINT 6029STRL-,)

602 FORrAATC17H z rHLLL 3TikLNuTHeoFl0.') I
PRINT 6039iPz

603 FORMAT(17H p*.**.,.F.5
PRINT 6'ý)4vXLA.','UIjlA

PR INT6.. 5 ,YLAN,;o[lM1
605 FORMAAT(1 7H LAMLbA Ye...... e.9F~o.5,20H i........FQ5

PRINT 60,6sJXgIY

606 FORN1AT(17H URIL' 'IZEo.oe.129I?4LH "jy13C

607 FORMATC26H(OL 0I)ITANCi'LS FOR 1/4 --HCLLL/)

PRINT 6G089 I~~,(I~u,= '),= N
608 FCRN¶AT(5H Z(IŽ,IHI2,2H)=FB.',r ? 2,H,22HFH5

1 rll ZCIŽ,1lriI,2t2H)F8.5tl5H Z(I2,1HvI2q2H)=FF.5,

2 5H ZI I2qlH9I2,2H)=Fe.5s5!H Z 12,IM,1 H91-,2H) =F8.5
C READ NEXT DA T A

999 E "'
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Plastic Beams Across Iwo Parallel Edges. The same differential equation governs these beams. It should be
noted that the differential equation considers oniy a symmetrical case abou, the boom. Thus, in this instance, the
membrane is computed as though there were an infinite set nf such nembranos set end-to-end, each contributing one-half
of the force carried by the plastic .am.

Input requirements are identical to the case of a plastic beam across the center of the membrane. The shape
derived by this program is given in Figure B-17.

SPoint of Max. Ris e/ . • -.. .of Membrane

" "" "' " •Point of Max. RiseI ,of Plasutic Beam

S/,

I / ]

Figure B-17. Plastic Beams Across Two Parallel Edges
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HAN4SLN I
** PROGRAM IS ITERATIVE
* COMPILE FORTRANoEXECUTE FORTRAN

C FUNICULAR SHELL, PRESSURE CONSTANT
C RFST RAIN ING, BAND ACROSS X=DI%1IA

DIM'ENSION Z(66,66)
C ZERO 7(19-1) t3ANL

1 D02l=lo66
D02J=1 .66

2 Z(IPJ)=0.
C MAX I X = MAX IY =64
C ICODZ.....PUNiCn -i L 10o 1 IF Z(IJ) GIVEN, 2 IF NOT GIVEN
C IX*9*9...NUP.3ER OF DIVISION.S ALONG DIMA
C IY.......NUN11ER OF DIVISIONS ALONG DIý`,
C ITERL....MAXI,'4tl.'M ITERATION!; ALLO'WED
C CCNVL....CONVERGENC(E LI%',IT ... YAX CHANG-- BETWEEN ITERATIONS
C DIMA*. ... lORIZONTAL DI;*.ENSIorT: CF 1/4 SHELL
C UL) /j ..... VI RTICktL )IMENSION OF 1/4 SHELL
c STRE~s,.ý.TRS'. PE'r LINEAR DISTANCE
c PVEr-3**ooP!LS-'UF<E PLi- UNIT APEA
C PHI......PJ7L.AXATION FACTOR...USE 1.7 FOR AN 8 BY 8 GRID

L>T RNB .... YILL,; ýLURt OF bE11 POUNDS
C' i TE R. .... TRATI,.NS COM-(PL;ETFD
c Z(I9J)*,*Rl~t-Af POINT IJ
C TCON2 .... VAX CriANGE LET.ýElN THI.S ITF9 AND LAST
C IP,9JPo...POH.IP CýF MAX CHANCE
c PS....PSR VER STRF.'S PATIO
C S TNrIX *... AVc* PERCL-NT STKAI'm OF PESTQAING [AND (BEAV11) AT X=DIMA

),vPUTE[D A' 100 T11-:) (A7. LENGTH -DrPDM

U 1.X.oAt Pl~kci.-T ýTRAIN 0;: SHELL THROUGH POINT OF MAX RISE
ATI X=Jq, CJ'-PUTED AS 1'CCu TIMES (ARC LENGTH - DIMBI/D!MP

C1 SP; .. A RICLNT STRAINj,: C' HELL THiROUCH POI-NT OF MAX RISE
r ~~AT Yzl -, CtMPiTED Acý 102 TIk'FS (ARC LENGTH - D*iMA)/LDTMA

C X LA'-'. . . . .. ~'IZ AL.( '
C YlV'.. . * 'o~r L ! ZE F L2'~ HII

c I N P;T
5~t 5C,!% T 9 1 OD/,l I XIY 9 IT RL 9C r N VL9P H I

5,27 F P1.A~ (T I I.,
P r.Ar, SC n~ I VA,~I vLH STýýFS oPiP ' 3FT~NP ,l.'! I10TH

57ý:1 F,"ýr T xF1.I
PP INT 9?9 9 IDNT

599 FORII.ý T(iPH I I (IujLAR ,L LL, 'T ",I 1%113 i9AND.% ACROSS X:DI) A /1FH IDE

PP INT 690
6C0 FOfRNAT I7Thi I TF2ý CLNT E'j D I FL LCT I ON N!AX CHAN3L IN SHELL

t, AX c i f"",-) I

'' I X + 1
N, I Y + I
C HL CK 1' 0 1 1 , I I (I AL Z (I sJ [ V t "

FO T' IF I

Y I I Y
X LAm =)I VA/X I
Y L AM L) I kl Iy I
I T L.M
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TCON2=U
TCON4=-'.1.
RI 5E2=0.
I CSWFH,=1
ISWCH~l
GO TO 100

101 3jn+1

11 1=1+1
J-2
IF(NI-I)999,15,luO

15 ISWCH=2

GO TO 100
iC2 J=J+i

IF( !X-J) 150 .2l921
21 ZCI+19J)=Z(I-1,J)

GiO TO 100
C COMPUTATIUON PHASE
C COMPUTE NEW Z(lJ)

I00 A=Z( 193+1)-t( I ,J-1

F:(4.*XLA..424A**2)*C'-5*A*R*E+U&.*YLAM**2+B**2)*V

F4r2.*(4.4XLANv,**2+A**2+4.*YLAM**2+J**2)
T:Z(I ,J)+PHI(cF+G)/H
P5=PRE53 /STRES

C ISAvE POINT JF fMAX RISE
IF(T-Rl5E2)23923922

22 RIEE2=T

C 5ET uP C-ONVERGENCE CHECK
23 TCONI=T-Z!':Y(

17 1 - WF- 2
I1I I f ~A(3S F T( 0N I -A oS T( VN,?)) 6'2610610 8

1 C18 'CON2 ý('ThI

106 Z(II.JIT
FIND RETURN STATEM;ENT

1C9 GO TO JQ'IAC
C COYPUTE l-(EAM

3 =,v4

155 A6=Z(I Ij-! i-Ic I .)

CE 4.*Z ' AM I 02 +tt -2.' 2 1 oJ.21-5!

F E) 4 . 0 TRV " A 0 /,,, T I AL Am 4 0 2 j A 0

T N



IF(ABSF(TCON3)-CGNVL)1519151,152
152 ICSWH=2
151 IF(ABSFci'CON3)-At8SF(TCON4) )153915391'54
154 TCON44=TCON3

IPB=I

153 Z(I*J)=TB

IF(.N-1 120091569155
156 Z( I+1,jB7( I-1,j)

GO TO 155
C CHECK CONVERGENCE

200 GO TO (203,202)9ICSW'H
C CHECK ITERATIONS

202 IF(ITERL-ITER)203,2o4,204
C DATA TO BE PRINTED OUT EACH ITERATION

204 PRINT61Cs IT ERZ(.NMý1 ,PJPTCON2,IFPflJPP.*TCON4
610 FORMAT(15,FI8.59 ICH Z( 129 1Ho 129 2H)= F995t

1 IJH Z( 129 1Hq 129 2H)= F9.5)
C CHECK AVERACE ý'LOPE AT POINT OF MAX RISE

I =I ps
J=JPS
XJ=J-1
IF(l.-7iIJ)/(XJ*YLAM))29s,20o,35

35 XI=I-l
IF(I.-Z(IJ1/(XI*XLAM,;)29929,3C

29 PRINT.61l
611 FOR'lAT(64H AVERAGE S)LOPE EXCEEDS 1 TO It EQUATIONS DIVERGE P,'ST THý

II-' POINT)
GO TO 203

C ITErýATE AGAIN
30 ITER=ITER+1

GO TO 10
C COMPUTEE cTRAI3', IN PEAM

2013 I=l
j =Mý

31 ARCi=SIQRTF(YLAM***2+(Z(1+1,J)-ZtIJ))**2)
ARC=ARC+ARC I
1=1+1

32 5T~X (ARC-DL) 11i )/L;,I 10;lC1.
c CCN!P'UTL ' tX :A I N I \ iELL AT Xz= CONSTANT

A C = C.

33 A RC I OR r F ( Y LA ik-i2+ Z 1+ 1,3 Z (I 9J) **

34 CT N S(' Y CU ./i~b*10C0
( CCýP(;T[ YPX 'I IRA IN IN SHELL ATY=C AT

3=1

36 A RC I = S ()RTF (X!- + ( z(1 ~J + I -2 (1 I3)

AP( =APC+IiJ\'C
J =J+ I

I F ( ý/--J ) 7", ,~ , 9Iif
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PR INT 599.91 vEIrjT
PRINT 609,rPHI

609 FORMAT (17H RELAX* FACTQRo..FlO.5)
PRINT 612w IPSSTNSYJPSSTNSX

612 FORMAT(16H ýTFRAIN ALONG- 1=1294H IS F5*2918H STRAIN ALONG J=129
14H IS F5 o2 )I PRINT 6019PRES39STNBX

601 FORMATU17H PRLS5URL........Fl095f2OH STRAIN IN bEAMsssFiO.t5)
PRINT 6~02,STRLs,.ýýTRNtB

6012 FORP4AT(17H SHELL. STRENGTHoeF!'C.5o20H BEAM STRENGTHae..F~o.5)
PP INT 6,33.2$ ,WJI TH

6,03' FCR"'AT(1H P/399,oooesoes..FlO.5,20H BEAM WIDTH o.....P1O*5)

P'RIPNT 62'4qXLA~1,DIMA

6 -ý4 FCR~MAT(17H LAIMUA Y*~** . .osF1O.5920H, Aa...............F1O.5)
PPINT605 ,YLAI~,DI-1,3

605 FORPMAT(17H LAMADA Y....*.....110.5920)H Boo..............F1O.5)
PRINT 6069!X*IY

606 FOR'AAT(17H (.jRID ':lZLao.eo*#1394H c3Y13)
F'RINT 6C27

6C'7 FORVAT(26HOZ ',1AýTANCES FOR 1/4 SHLLL/)
PPFI:T (:,t89 ,~(I.)J1M ~ N

1 5H Z(12tlH,12o2h-F895,SH Z(]Z-)lHI292H)=F8s59
2 ý,ri Z(12.ýIH91292H' -qs5,9fr 7(12,1HI2,,?H)=F8o5)

C READ t!CxT DAT A
50 T " 1

999 END
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APPENDIX C

S -SOIL STRUCTURE INTERACTION

Introd'•ction

The yielding membrane elements, in addition t'o being efficient structural diaphrams in themselves, bring about
favorable ý,oil-structure interaction behavior. This Appendix presents background into the qualitative aspects of this
behavior and suggests probable magnitudes of ultimate attentuation of blast overpressures that could result from these
interactions.

Soil-Structurp Interaction Fcrces

Soii-stnrcture interaction forces are those forces which act at the interface between a buried structure and the
surrounding soil medium. These are generally considered to be normal pressures but, to be sure, shearing forces also exist
at this interfacial junction.

Normal forces result from pressures which act normally to the interfacial !urface ere generally !n the some order
of magnitude as the surface overpressures in the ai7 medium above the ground surface. Shearing forces are those forces
which act tangential to the interfacial surface and generally are in the same order of magnitude as the respective shearing
forces in the soil under these conditions. In general, the normal forces prv.duce the greater effect or response in the
structure; because of this fact, discussion will be limited t- the action of structures under this interaction component only.

Effective Soil-Structure Interaction Pressures

The effective soil-structure interaction pressure is defined as that normal pressure distribution which at a given
instant will produce a static free-field deformation in the structure equal to the deformation of the structure, in the soil
medium at the same instant. It follows then, if we can neglect the shearing components of interaction forces, that the

-j• moments and stresses under this effective pressure willI equal those in the confined structure at the same instant.

Effective soil-structure interaction pressures depend upon the characteristics and homogeneity of tfe soil, the
nature of the loading, and the stiffness and georretrY of the buried structure with relation to the surrounding soil.

Types of Buried Structures

Because the type of buried structure has so much effect on the nature of magnification or attenuation v' the
passing overpressure, it is appropriate to consider these types in some detail. The three basic types, inte which categories
most buried structures fall, are the rigid, rigid-flexible, and flexible types. Figure C-i shows examnples of these types

of structures.

SRigid Buried Structures. Rigid buried structures are those buried structures which by defin;tion undergo
negligible deformation upon loading. As a result of their rigidity, they have certain pecularities of interaction behavior
which will be discussed in more detail later.

Rigid-Flexible Buried Structures. A rigid-flexible structure is one which by definition exhibits rigid
characteristics until some time in its rising loading cycle at which point it yields or flexes in such a noanner so as to
reduce its volume or alter its shape considerably.

Flexible Buried Structures. Flexible bJried structures are those structures which by definition exhibit yielding
or other noticeable structural de ortation immediately on the first sign of an overload. They continue this yielding or¶ reduction in volume behavior throghout the rising locding cycle.

Settlement Ratios

To fully realize the nature of soil-.stucture interaction phenomena, It is appropriate to considar three basicI types of settlement ratios. These are positive, negative, and zero tatiob.
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The Positive Settlement Ratio. The positive settlement ratio by definition is associated with the change in
geometry of MesoiH moss surrounding a buried structure such that the structure feels a vertical load in excess of the
resultant of the dead and live loads immediately overhead.

I The concept of positive settlement ratio may be described visually by the idec ized drawing in Figure C-2. It
will be observed that the soil mass surrounding the structure deflects more than the vertical coiumn of soil in which the
structure is contained. As a result of this idealized geometrical dscontinuity, vertical shearing forces are produced which
add to the load that is normally experienced. The effective soil structure interaction pressure for this situation is then
larger than that existing in an undisturbed soil at this same depth. To be sure, this sudden discontinuity does not usually
exist and more corbeling action may be observed, however, the overall effect it the same.

Systems which produce positive settlement ratios are general ly those which contain rigid structures. These rigid
structures increase the overall stiffness of the vertical column of soil in which they are contained. A simplified version
of this result is shown in Figure C-3. If we assume a stress-strain relationship such as Hooke's Law to be valid, the left
column of soil will deflect an amount ALI, where AL1 = pL/E. The column of soil on tVie right, which contains the
rigid structure, will deflect an amount AL2 = p(L-D)/E, where D is the height of the rigid structure. These two
displacements differ by an amount pD/E. The first is always orater than the second, all other things being equal.
The magnitude of this difference to some extent determines the amount to which the pressure reaching the structure is
increased by this geometrical action.

I --- MACH FRONT

M I .. .......
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1 Figure C-2. Idealized Positive Settlement Ratio
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The Negative Settlement Ratio. The negative settlement ratio by definition is associated with the change in
geometry of the soil mass surroimding a buried structure such that the structure feels a vertical load which is less than
the resultant of the dead and live loads immediately overhead.

The negative settlement ratio is shown visually in Figure C-4. It will be observed that the soil mass surrounding
the structure deflects less than the vertical column of soil in which the structure is contained. As a result of thi3
idealized geometrical discontinuity, vertical shearing forces are produced which subtract from the load that is normally
experienced. The effective soil-structure interaction pressure for this situation is then smaller than that existing in an
undisturbed soil at the same depth. As before, the sudden discontinuity does not exist and in reality soil arching takes
place but the overall effect is the same.

Systems which produce negative settlement ratios are generally those which contain f~exib!e structures. These
flexible structures reduce the overall stiffness of the vertica: column of soil in which they are contained. A simplified
version of this result is shown in Figure C-5. If the same linear stress-strain relationship is assumed as that previously,
the left column of soil will deflect an amount A L1 = pL/E. as before. The column of soil on the right, which contains
the flexible structure, will deflect an arnountA L2 = p(L-D)/E +4 D. If AD is greater than pD/E, thenA L2 will be
greater than AL1 . AD will always be greater than pD/E if the structure is more flexible than the soil mass it replaces.
Flexible structures by definition are not as stiff as surrounding soil, therefore, they always produce negative settlement
ratios.

Zero Settlement Ratio. A zero settlement ratio is defined as being associated with that condition when the
surrounding soil mcss and thai'oil column containing the structure deflect equal amounts. Under such conditions, the
effective soil structure interaction pressure is equal to that existing in an undisturbed toil medium at the same point.
Figure C-6 shows such a condition.

------- INITIAL POSITION---
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Figure C-3. Positive Settlement Ratio
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These systems are those in which the soil and structure possess equal stiffnesses. Certain types of rigid,
rigid-flexible, and flexible structures may at some point in their loading cycle exhibit this behavior. In general, suchsituations rarely happen throughout the entire loading cycle.

SoiI-Structure Interactions

Rigid Full -Buried Strucl-ures. Rigid fully-buried structures generally produce positive settlement ratio
conditionsland as a result should be designed for pressures in excess of those existing at similar points in undistrubed
soils. By definition, a rigid structure is one which undergoes negligible deformation on loading. According to the
Air Force Design Manual (AFDM) definition, a fully buried structure is one which is buricl sufficiently so that transient
effects of shock wave loadings may be neglected. This arch, if corresponding to the ful!y-buried definition, can only
und..rgo uniform compressive stress by virtue of its uniform pressure loadings. The only bending that can develop is due
to the change in curvature associated with the uniform change in radius that results from this idealized loading.

Qualitative aspects of the behavior of this structure under a traveling pressure wave are shown in Figure C-7.
At initial contact of the wavefront with the structure, non-uniform pressures are developed. These pressures deform
the cylinder immediately with the result that passive earth pressures develop on the sides at right angles to the wavefront.
Very rapidly, the situation degenerates or stabilizes into that shown in the later diagrams. Once the pressure is uniform,
it then starts to decay scmewhat proportional to the decaying surface wave.

A qualitative load-strain diagram for this shape is shown in Figure C-8. Note that such rigid structures
generally fail suddenly cn overload.

MACH FRONT
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M SHEAR EFFECT

UNDErFORMED DEFORMED
SURCE STRUCTURE

Figure C-4. Idealized Negutive Settlement Ratio
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Flexible Buried Structures. Flexible buried shuctures exhibit the opposite behavior to rigid structrues.
Yielding Gegins almost instantly with sign of overpressure and continues until such has been relieved. These structures
contain yielding tension membranes as the roof and floor. Such structures will produce negative settlement ratios
which rapidly attenuate ý:ast overpressures.

A qualitative load-strain diagram for this shape is shown in Figure C-9. Note the large strain which follows
a low lood.

Rigid-Flexible Buried Structures. As the name implies, a rigid-flexible structure exhibits the qualities of
each type during its loading cycle. As might be expected, positive 3ettlement ratios immediately followed by negative
ratios may develop. The qualitative load-strain picture for this structure may be seen in Figure C-10.

This structure is actually ambidextrous in that it may exhibit rigid, flexible, or rigid-flexible behavior
depending on the nature of loading, type of backfill procedure, etc. Generally, however, it is quite rigid until either
large elastic deformations or buckling takes over. Either of these latter effects are those of a flexible nature.
Figure C-1I shows stable yield of this structure. Figure C-12 shows unstable yield.

Summary of Effects. The various types of structures, because of their various actions, feel different
transmitted pressure waves. These waves, in their different forms, may be seen in Figure C-13. Note the immediate
advantages of the rigid-flexible and flexible types.

Analyis Features

The stage hs been set, by the previous qualitative discussions, for the statement that quantitative predictions
of these soil-structure interaction loads are most difficult. Here we have a statically indeterminate structural problem
of the worst type. Very little quantitative results of any kind are available to substantiate reliable magnitude
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Figure C-5. Negative Settlement Ratio
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predictions. There is a particularly intense need for more theoretical and experimental data on the soil-structure
interaction phenomenon.

These quantitative predictions are necessary if hopes of meaningful analyses are real. Fortunately, designs may
be produced from Yhat limited knowledge we now have/if we are not overly concerned about being :onservative.

Design Features

The ultimate in structural analysis is to find an answer, such as stress and displacement; given a structure, itssupports,and its loads. Obviously, for most physical systems there is generally but one answer. The unalyst hopes toeither find this answer exactly, or gain a close enough approximation so that his answer is acceptable. In short, theanalyst is a problem solver. The ultimate in design is to create a given structure, to resist given loads, over givenboundaries such that an analysis is not necessary to assure that this structure will perform satisfactorily. In short, then,
the designer is a problem avoider.

A qualitative understanding of J-he general physical behavior of an underground structure, as we have justconsidered, is not sufficient for analysis. However, such an understanding is sufficient for design. Because so littleis known about the quantitative behavior of underground structures, as compared with those above-ground, we
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Figure C-6. Zero Settleme"it Ratio

C-7



unavoidably find that our designs are conservative. This is not altogether bad, however, because the source of con-
servatism is geneally fouind in the supporting strength offered by the soil. For regions in which blast overpressures
are considered, close-In fallout and initial radiation will almost assuredly be such that quite a lot of mass will be
required for adequate shielding. There is no more economical mass for shielding that earth; and, therefore, in such
regioni, buried shructures make sense from the fallout and radiation standpoint, certainly from the blast resistance
standpoint.
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Figure C-7. A Structure Under a Traveling Pressure Wave
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APPENDIX D

HISTORICAL REVIEW OF MEMBRANE THEORY

A brief review of the development of large deflection theories of plates and the membrane theory of shells is
offered in order to supplement the previbus analyses. The review is not intended to be exhaustive in these fields, but
rather a survey pointing out major contributions. A reasonably complete bibliography supplements the discussion.

In 1910, von Karman extended the linear theory of plates by taking into account the strain in the middle plane
of the plate. He derived two non-linear differential equations, as follows:

4w 2 64w 4w a

(1)2 - 2 2 2 242

h [q(x, c) 2F d2w 2F 2w 2F 2 w2
7xx a y ;J

x xxdyj
4 4 4 22 2 2

6 F + 2 0F 4 C)F E , aw 6(2)
a x d~x dy E[(y 6)Xiay41

In 1912, an exact solution of von Karman's equations for a thin, infinitely-long rectangula; strip with clamped
or supported edges was obtained by Boobnov.

In 1915, Hencky obtained an approximate solution o- a laterally loaded circular membrane, or plate of
negligible flexural rigidity,by a finite difference approach. Later (Hencky, 1921), he applied the same method to
obtain an approximate solution of a laterally loaded rectangular membrane. This same problem was solved by F. Foppl
in 1922. He reduced the von Karman equations to the following:

q(x,y) + 62F c2w 2 c F dl '2F cw(3)
F- + = 0)xýy--x 3y Z

(34 F 6 84F a 4F C) 2 "w 2 2 W 2 w
+ 2 = Ey (4)

Another approximate soh ticn by A. Foppl and L. FoppI in 1924 made use of ihe Ritz method. They derived
the following equation for the centir deflection of a circular membrane with clamped edges:

W %) -0 538 3 P 4 (I - 20 .538 2 (5)

In 1925, Nadai derived an approximate solution to the circular membrane problem:

w 0 ' 0.583 3! (1- r2 (6)

And in 1928 Timoshenko used Nadai's approach with an assumed radial displacement and derived the following
equation for the maximum deflection:
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In 1934, S. Way obtained a power series of von Karman's large deflection equations for the deflection equations,
for the deflections of a circular plate. He carried the problem out to a center deflection-to-plate thickness ratio of 2/0.
Later (Way, 1938), he obtained an approximate solution for a clamped rectangular plate using the Ritz energy method.

In 1936, Rudolf Kaiser reduced the general von Karman equations to five seuond-L, der differential equations;
the flexural rig Jity was taken as zero in one case. These five equations were solved numerically by the use of finite
difference approximations for the solution of a square, simple supported, plate. The maximum center deflcction-to-plate
thickness ratio was 2/5.

From a summary of experimental and analytical research of flat plates under concentrated normal loads, R. G.
Stum and R. L. Moore (Sturn and Moore, 1937) concluded that when the deflection does not exceed one half the
thickness of the plate, over 95 percent of the load may be assumed to be carried by bending. For deflections on the
order of eight times the plate thickness, as little as 15 percent of the load is carried by bending.

Most of the theories of plates of negligible flexural rigidity I-nit the maximum deflection to about two to four
times the thickness of the plate. This is certainly in the large deflection theory range but, in addition, these deflections
also cause strains which are small enough to be within the elastic range.

A number of analytical studies have been conducted to determine the behavior of circular membranes (Hencky,
1915; Hill, 1950). Hill states that, for the special case when the radial and circumferential strains are equal, the
strains vary approximately as the deflection.

Many circular membrane tests have been co,ýducted (McPherson, et al, 1942; Sachs, et al, 1946; Brown and
Sachs, 1948; Gleyzal, 1948; Brown and Thompson, 1949; Weil and Newmark, 1955). It can be noted here that, up to
the initial point of svcondary bulge at the center of the shell, the circumferential strains vary approximately as the
deflection in the shell. The radial strain varies from about one half the center strain at the clamped edge, to the
maximum at the center, (at the center~the radial and circumferential strains are equal). These tests were mainly
interested in the "instability strains" or the strain at the start of the secondary bulge. This point is reached immediately
before failure occurs. These tests also indicated that the circular membranes deflect to form a nearby spherical surface
under uniforn lateral pressure.

Only two of thlese circular membrane tests provided results which can be correlated with the material
presented here (Gleyzal, 1948; Weil and Newmark, 1955). These are presented in Appendix A with Comparison of
Results.

In an attempt to determine the plastic behavior of steel under a biaxial stress state, tests have been run on thin
tubes (Froenkel, 1948; Davis and Parker, 1948; Phillips and Koechele, 1956).

In 1942, San~uel Levy and associates, working for the NACA, conducted a number of large deflection tests on
thin rectangular plates (Levy, 1942a; Levy, 1942b; Ramberg, et al, 1942). In one of these tests the center deflection
to plate thickness ratio was 12/2. The results of this test are shown in F'qure D-1. A comparison with the present
results is shown in Appendix A. The reports deal mainly with the solution of von Karman's fundamental equations for
large deflections by Fourier series. However, in nmost cases the -enter deflection of the plate was less than four times
the plate thickness and the permanent set was lees than the thickness of the plate. It might be noted that they reached
the conclusion that a plate with clamped edge• having c; lenqth to span ratio of two, or greater, deflects substantially
ihe same as a plate of infinite length.

lhe solution of von Karman's plate equations for a thin membra,,e, such that fle ýural rigidity is zero, has also
been - .,:omplished by Show and Perrcne (Shaw and Perrone, 1954). They cast the problem in terms of displacement
components u, v, and w and thus obtained three simultaneous, non-linear, second-order, partial differential equations.
These equations were solved by finite differences nnd a relaxation procedure. However, they dealt with relatively
sn IIll deflections (stresses within the elastic range).

The point of interest here is that they solved for the vertical deflections (w) with the horizontal displacements
(u arid v) taken to be zero, and they also solved the complete problem for u, v, and w. They noted then that the w
displacements c-, e large relative to u and v and that the solution for w only, holding u und v zero everywhere, does not
vary appreciably from the w displacements obtained from the complete solution for u, v, and w. That is, the solution
,or vertical displacements can be obtained accurately by considering equilibrium in the vertical direction only.
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In 1959, W. Zema developed the 14 . 1

equations that must be solved to calculate the
stresses in a membrane shell which has a -- -

circular cross-section, at any point along its
length (or width); and has the same angle 1o
with the horizontal at any point along its 12

boundaries. The plan area may be quite D .00,

irregular. ;4- -1 -

A series of tests for ultimate I C

deflection and strain has been conducted 10 - - -..-
by J. E. Greenspon (Greenspon, 1956). 0 'o

Only the results at failure are given in the
comparison with present results (Appendix A). -

.,

' In 1960, J.E. Greenspon con- 'o 8 - L/"f-
sidered the problem of large deflections o/I
in a plate and treated it as a membrane o
under uniform static pressure load: 1 0w

+ ~3w = P (8) 6 'i~

where P is the external lateral pressure and -

S is the tension per unit length. For the
maximum deflection of a clamped I
rectangular plate he obtained: 4--

Wmax 2(9)--
3smobnov, ,/j -

Si+ ) 3 2
For the maximum strain at the middle of the -- Foppl, %/b - I
long side x = 0, y b/2

F1 0 al., 4 1b

Sma= 0. 132b L[ 2 (10) 0 1 1
S 0 1000 2000 3000 4000

4 4Preuure Ratio PC /Eh

where S =-ut. Figure D-I. Cei ter Deflection versus Pressure for rPsctangular Plates

The concept of shell design by an inverse procedure has been suggested by a number of inv'estigators (Poschl,
1927; Home, 1945; Timoshenko, 1959; Flugge, 1960; Harrenstien, 1961). This concept is that of fii "ng the shape to
which a shell must adapt, in order to carry prescribed normal pressure loads under uniform direct stress. Harrenstien
assumed a uniform compressive membrane force (-S) and n.rduced the equilibrium equations of a membrane shell (Wang,
1953) to one equation

-I P13

He used the exact expression for the mean curvature of a circular Yembrare, and an almost exact expression for the mean
curvature of a rectangular membratie, to solve for the shape a membrane must take to resist a lateral load completely by
compressive membrane forcc-.

Harrenstien used four approaches to solve the equations: (1) direct 1"tegration to obtain a closed form solution,
(2) series solution, (3) numerical apprcximaton by finite differences, and (4) membrane analogy. Shell structure models
were built to conform to the dimensions predicted by the solutions of the equations. The presentation (Hiirrenstien, 1961)
illustrated the strength of membrane shells designed by this method. Evidence of this fact may be abservea by a
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consideration of the failure load exhibited by a 0. 120 in. thick plaster-of-paris shell. This unreinforced shell, with a
diameter of 12.0 in., and a center loading diameter of 2.4 in., resisted a center load of 685 lbs. before failing.

As can be observed from this review, some work has been done in the region of large plastic deflections of
membrane. However, most of the work has been concerned with circular membranes. Little work has been accomplished
concerning yielding rectangular membranes supported by yielding edge beams.
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